Weak Convergence of a Mass-Structured Individual-Based Model

We propose a model of chemostat where the bacterial population is individually-based, each bacterium is explicitly represented and has a mass evolving continuously over time. The substrate concentration is represented as a conventional ordinary differential equation. These two components are coupled with the bacterial consumption. Mechanisms acting on the bacteria are explicitly described (growth, division and washout). Bacteria interact via consumption. We set the exact Monte Carlo simulation algorithm of this model and its mathematical representation as a stochastic process. We prove the convergence of this process to the solution of an integro-differential equation when the population size tends to infinity. Finally, we propose several numerical simulations.

[1]  Doraiswami Ramkrishna,et al.  Statistical models of cell populations , 1979 .

[2]  Nicolas Fournier,et al.  A microscopic probabilistic description of a locally regulated population and macroscopic approximations , 2004, math/0503546.

[3]  Prodromos Daoutidis,et al.  Dynamics and Control of Cell Populations in Continuous Bioreactors , 2002 .

[4]  Armin Fiechter,et al.  Advances in Biochemical Engineering , 1971 .

[5]  Nicolas Champagnat A microscopic interpretation for adaptive dynamics trait substitution sequence models , 2005, math/0512063.

[6]  A. Novick,et al.  Description of the chemostat. , 1950, Science.

[7]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[8]  B. Perthame,et al.  The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach. , 2005, Theoretical population biology.

[9]  J. Monod,et al.  Technique, Theory and Applications of Continuous Culture. , 1950 .

[10]  Michael A. Henson,et al.  Dynamic modeling and control of yeast cell populations in continuous biochemical reactors , 2003, Comput. Chem. Eng..

[11]  M. Metivier,et al.  Weak convergence of sequences of semimartingales with applications to multitype branching processes , 1986, Advances in Applied Probability.

[12]  Doraiswami Ramkrishna,et al.  Population Balances: Theory and Applications to Particulate Systems in Engineering , 2000 .

[13]  Donald L. DeAngelis,et al.  Individual-Based Models and Approaches in Ecology: Populations, Communities and Ecosystems , 2013 .

[14]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[15]  V. Tran LARGE POPULATION LIMIT AND TIME BEHAVIOUR OF A STOCHASTIC PARTICLE MODEL DESCRIBING AN AGE-STRUCTURED POPULATION , 2008 .

[16]  Paul Waltman,et al.  The Theory of the Chemostat: Dynamics of Microbial Competition , 1995 .

[17]  Pierre-Emmanuel Jabin,et al.  Adaptation in a stochastic multi-resources chemostat model , 2013, 1302.0552.

[18]  B. Perthame,et al.  Direct competition results from strong competition for limited resource , 2012, Journal of mathematical biology.

[19]  Doraiswami Ramkrishna,et al.  Statistics and dynamics of procaryotic cell populations , 1967 .

[20]  Sylvie Méléard,et al.  Sur les convergences étroite ou vague de processus à valeurs mesures , 1993 .

[21]  Giacomo Ziglio,et al.  Itô formula for stochastic integrals w.r.t. compensated Poisson random measures on separable Banach spaces , 2006 .

[22]  Fabien Campillo,et al.  Stochastic modeling of the chemostat , 2011 .

[23]  Dmitri Finkelshtein,et al.  Individual Based Model with Competition in Spatial Ecology , 2008, SIAM J. Math. Anal..

[24]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[25]  Jacques Monod,et al.  LA TECHNIQUE DE CULTURE CONTINUE THÉORIE ET APPLICATIONS , 1978 .

[26]  Sylvie Roelly‐ Coppoletta A criterion of convergence of measure‐valued processes: application to measure branching processes , 1986 .

[27]  Joel Spencer,et al.  Ecole D'Ete De Probabilites De Saint-Flour Xxi-1991 , 1993 .

[28]  Donald A. Dawson,et al.  Measure-valued Markov processes , 1993 .

[29]  F. Campillo,et al.  A mass-structured individual-based model of the chemostat: convergence and simulation , 2013, 1308.2411.

[30]  Viet Chi Tran Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques , 2006 .

[31]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[32]  B. Perthame,et al.  Evolution of species trait through resource competition , 2012, Journal of mathematical biology.

[33]  J. Monod,et al.  Thetechnique of continuous culture. , 1950 .

[34]  S. Roelly-Coppoletta A criterion of convergence of measure-valued processes: Application to measure branching processes , 1986 .