Parameter estimation for chaotic systems with and without noise using differential evolution-based method
暂无分享,去创建一个
罗斌 | 江宁 | 潘炜 | 李念强 | 闫连山 | 徐明峰 | W. Pan 潘 | L. Yan 闫 | 徐明峰 | Nian-Qiang 念强 Li 李 | Bin 斌 Luo 罗 | Ming-Feng 明峰 Xu 徐 | Ning 宁 Jiang 江
[1] Ling Wang,et al. Parameter estimation for chaotic systems by particle swarm optimization , 2007 .
[2] A. Roy Chowdhury,et al. Parameter estimation of a delay dynamical system using synchronization in presence of noise , 2007 .
[3] Xiangdong Wang,et al. Parameters identification of chaotic systems via chaotic ant swarm , 2006 .
[4] S. Ortin,et al. Time-Delay Identification in a Chaotic Semiconductor Laser With Optical Feedback: A Dynamical Point of View , 2009, IEEE Journal of Quantum Electronics.
[5] Xiaogang Wu,et al. Parameter estimation only from the symbolic sequences generated by chaos system , 2004 .
[6] Yinggan Tang,et al. Parameter estimation of chaotic system with time-delay: A differential evolution approach , 2009 .
[7] Kestutis Pyragas. SYNCHRONIZATION OF COUPLED TIME-DELAY SYSTEMS : ANALYTICAL ESTIMATIONS , 1998 .
[8] 高飞,et al. Parameters estimation online for Lorenz system by a novel quantum-behaved particle swarm optimization , 2008 .
[9] G. Álvarez,et al. Cryptanalysis of an ergodic chaotic cipher , 2003 .
[10] W. Chang. Parameter identification of Rossler’s chaotic system by an evolutionary algorithm , 2006 .
[11] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[12] Henry D I Abarbanel,et al. Parameter and state estimation of experimental chaotic systems using synchronization. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[13] James M. Jeanne,et al. Estimation of parameters in nonlinear systems using balanced synchronization. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[14] Parlitz,et al. Synchronization-based parameter estimation from time series. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[15] C. Piccardi. On parameter estimation of chaotic systems via symbolic time-series analysis. , 2006, Chaos.
[16] Jiagui Wu,et al. Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback. , 2009, Optics express.
[17] Xiaofeng Li,et al. Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization , 2006, IEEE Journal of Quantum Electronics.
[18] E. M. Shahverdiev,et al. Chaos synchronization between the Mackey–Glass systems with multiple time delays , 2006 .
[19] Parlitz,et al. Estimating model parameters from time series by autosynchronization. , 1996, Physical review letters.
[20] Bo Peng,et al. Differential evolution algorithm-based parameter estimation for chaotic systems , 2009 .
[21] V I Ponomarenko,et al. Extracting information masked by the chaotic signal of a time-delay system. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[22] W. Pan,et al. Chaos synchronization communication using extremely unsymmetrical bidirectional injections. , 2008, Optics letters.