Empirical analysis and modeling of errors of atmospheric profiles from GPS radio occultation

Abstract. The utilization of radio occultation (RO) data in atmospheric studies requires precise knowledge of error characteristics. We present results of an empirical error analysis of GPS RO bending angle, refractivity, dry pressure, dry geopotential height, and dry temperature. We find very good agreement between data characteristics of different missions (CHAMP, GRACE-A, and Formosat-3/COSMIC (F3C)). In the global mean, observational errors (standard deviation from "true" profiles at mean tangent point location) agree within 0.3% in bending angle, 0.1% in refractivity, and 0.2 K in dry temperature at all altitude levels between 4 km and 35 km. Above 35 km the increase of the CHAMP raw bending angle observational error is more pronounced than that of GRACE-A and F3C leading to a larger observational error of about 1% at 42 km. Above ≈20 km, the observational errors show a strong seasonal dependence at high latitudes. Larger errors occur in hemispheric wintertime and are associated mainly with background data used in the retrieval process particularly under conditions when ionospheric residual is large. The comparison between UCAR and WEGC results (both data centers have independent inversion processing chains) reveals different magnitudes of observational errors in atmospheric parameters, which are attributable to different background fields used. Based on the empirical error estimates, we provide a simple analytical error model for GPS RO atmospheric parameters for the altitude range of 4 km to 35 km and up to 50 km for UCAR raw bending angle and refractivity. In the model, which accounts for vertical, latitudinal, and seasonal variations, a constant error is adopted around the tropopause region amounting to 0.8% for bending angle, 0.35% for refractivity, 0.15% for dry pressure, 10 m for dry geopotential height, and 0.7 K for dry temperature. Below this region the observational error increases following an inverse height power-law and above it increases exponentially. For bending angle and refractivity we also include formulations for error correlations in order to enable modeling of full error covariance matrices for these primary data assimilation variables. The observational error model is the same for UCAR and WEGC data but due to somewhat different error characteristics below about 10 km and above about 20 km some parameters have to be adjusted. Overall, the observational error model is easily applicable and adjustable to individual error characteristics.

[1]  M. Rothacher,et al.  Observations and simulations of receiver-induced refractivity biases in GPS radio occultation , 2005, physics/0502052.

[2]  Y. Kuo,et al.  Analysis of migrating diurnal tides detected in FORMOSAT-3/COSMIC temperature data , 2010 .

[3]  M. E. Gorbunov,et al.  Canonical transform method for processing radio occultation data in the lower troposphere , 2002 .

[4]  Gottfried Kirchengast,et al.  Inversion, error analysis, and validation of GPS/MET occultation data , 1999 .

[5]  Philippe Keckhut,et al.  The SPARC Intercomparison of Middle-Atmosphere Climatologies , 2004, Journal of Climate.

[6]  J. R. Eyre,et al.  Retrieving temperature, water vapour and surface pressure information from refractive‐index profiles derived by radio occultation: A simulation study , 2000 .

[7]  Gottfried Kirchengast,et al.  Error analysis for GNSS radio occultation data based on ensembles of profiles from end‐to‐end simulations , 2005 .

[8]  Markus J. Rieder,et al.  Error analysis for mesospheric temperature profiling by absorptive occultation sensors , 2001 .

[9]  Sergey Sokolovskiy,et al.  Statistical optimization approach for GPS/MET data inversion [presentation] , 1996 .

[10]  Christian Rocken,et al.  The COSMIC/FORMOSAT-3 Mission: Early Results , 2008 .

[11]  W. Bertiger,et al.  A technical description of atmospheric sounding by GPS occultation , 2002 .

[12]  Y. Kuo,et al.  Observational Error Estimation of FORMOSAT-3/COSMIC GPS Radio Occultation Data , 2011 .

[13]  W. G. Melbourne,et al.  The application of spaceborne GPS to atmospheric limb sounding and global change monitoring , 1994 .

[14]  Barbara Scherllin-Pirscher,et al.  Refractivity and temperature climate records from multiple radio occultation satellites consistent within 0.05 , 2011 .

[15]  Gottfried Kirchengast,et al.  Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses , 2007 .

[16]  L. Cucurull,et al.  Operational Implementation of COSMIC Observations into NCEP’s Global Data Assimilation System , 2008 .

[17]  Ying-Hwa Kuo,et al.  Quantifying uncertainty in climatological fields from GPS radio occultation: an empirical-analytical error model , 2011 .

[18]  X. Zou,et al.  Analysis and validation of GPS/MET data in the neutral atmosphere , 1997 .

[19]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .

[20]  Grzegorz Michalak,et al.  GPS Radio Occultation with CHAMP, GRACE-A, SAC-C, TerraSAR-X, and FORMOSAT-3/COSMIC: Brief Review of Results from GFZ , 2009 .

[21]  Anthony J. Mannucci,et al.  CHAMP and SAC-C atmospheric occultation results and intercomparisons , 2004 .

[22]  J. Schofield,et al.  Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System , 1997 .

[23]  Shinfield Park,et al.  Assimilation of GPS radio occultation measurements at ECMWF , 2008 .

[24]  Sergey Sokolovskiy,et al.  Quality assessment of COSMIC/FORMOSAT-3 GPS radio occultation data derived from single- and double-difference atmospheric excess phase processing , 2010 .

[25]  Godelieve Deblonde,et al.  Impact of the Assimilation of CHAMP Refractivity Profiles on Environment Canada Global Forecasts , 2008 .

[26]  John J. Barnett,et al.  Application of an optimal estimation inverse method to GPS/MET bending angle observations , 2001 .

[27]  Ying-Hwa Kuo,et al.  Estimating the uncertainty of using GPS radio occultation data for climate monitoring: Intercomparison of CHAMP refractivity climate records from 2002 to 2006 from different data centers , 2009 .

[28]  U. Foelsche,et al.  Atmospheric temperature change detection with GPS radio occultation 1995 to 2008 , 2009 .

[29]  U. Foelsche,et al.  Tropical tropopause climatology as observed with radio occultation measurements from CHAMP compared to ECMWF and NCEP analyses , 2007 .

[30]  Christian Rocken,et al.  Inversion and error estimation of GPS radio occultation Data , 2004 .

[31]  A. Hedin Extension of the MSIS Thermosphere Model into the middle and lower atmosphere , 1991 .

[32]  Ying-Hwa Kuo,et al.  A comparison of lower stratosphere temperature from microwave measurements with CHAMP GPS RO data , 2007 .

[33]  Jens Wickert,et al.  Observing upper troposphere–lower stratosphere climate with radio occultation data from the CHAMP satellite , 2008 .

[34]  J. Dykema,et al.  Climate Benchmarking Using GNSS Occultation , 2006 .

[35]  M. Rennie,et al.  The impact of GPS radio occultation assimilation at the Met Office , 2010 .

[36]  Stig Syndergaard,et al.  Errors in GNSS radio occultation data: relevance of the measurement geometry and obliquity of profiles , 2010 .

[37]  J. R. Eyre,et al.  A nonlinear optimal estimation inverse method for radio occultation measurements of temperature, humidity, and surface pressure , 2000, physics/0003010.

[38]  Gottfried Kirchengast,et al.  Sensitivity of GNSS radio occultation data to horizontal variability in the troposphere , 2002 .

[39]  Juha-Pekka Luntama,et al.  Prospects of the EPS GRAS Mission For Operational Atmospheric Applications , 2008 .

[40]  Gottfried Kirchengast,et al.  Advancements of Global Navigation Satellite System radio occultation retrieval in the upper stratosphere for optimal climate monitoring utility , 2004 .

[41]  Markus J. Rieder,et al.  Error analysis and characterization of atmospheric profiles retrieved from GNSS occultation data , 2001 .

[42]  A. Löscher,et al.  Error Characteristics of Refractivity Profiles Retrieved from CHAMP Radio Occultation Data , 2006 .

[43]  Ying-Hwa Kuo,et al.  Assimilation of GPS radio occultation data for numerical weather prediction , 2000 .

[44]  C. Deser,et al.  Detection of migrating diurnal tide in the tropical upper troposphere and lower stratosphere using the Challenging Minisatellite Payload radio occultation data , 2008 .

[45]  C. Marquardt,et al.  Forecast impact experiment with GPS radio occultation measurements , 2005 .

[46]  Abel Integral Inversion in Occultation Measurements , 2004 .

[47]  Gottfried Kirchengast,et al.  Ensemble-Based Analysis of Errors in Atmospheric Profiles Retrieved from GNSS Occultation Data , 2004 .

[48]  Jean-Noël Thépaut,et al.  Assimilation experiments with CHAMP GPS radio occultation measurements , 2006 .

[49]  H. H. Benzon,et al.  Full Spectrum Inversion of radio occultation signals , 2003 .