A Semismooth Newton Method for L1 Data Fitting with Automatic Choice of Regularization Parameters and Noise Calibration

This paper considers the numerical solution of inverse problems with an $\mathrm{L}^1$ data fitting term, which is challenging due to the lack of differentiability of the objective functional. Utilizing convex duality, the problem is reformulated as minimizing a smooth functional with pointwise constraints, which can be efficiently solved using a semismooth Newton method. In order to achieve superlinear convergence, the dual problem requires additional regularization. For both the primal and the dual problems, the choice of the regularization parameters is crucial. We propose adaptive strategies for choosing these parameters. The regularization parameter in the primal formulation is chosen according to a balancing principle derived from the model function approach, whereas the one in the dual formulation is determined by a path-following strategy based on the structure of the optimality conditions. Several numerical experiments confirm the efficiency and robustness of the proposed method and adaptive strategy.

[1]  Mila Nikolova,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[2]  Karl Kunisch,et al.  Denoising of Smooth Images Using L1-Fitting , 2005, Computing.

[3]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..

[4]  Stefano Alliney,et al.  An algorithm for the minimization of mixed l1 and l2 norms with application to Bayesian estimation , 1994, IEEE Trans. Signal Process..

[5]  Yiqiu Dong,et al.  An Efficient Primal-Dual Method for L1TV Image Restoration , 2009, SIAM J. Imaging Sci..

[6]  H. Engl,et al.  Convergence rates for Tikhonov regularisation of non-linear ill-posed problems , 1989 .

[7]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[8]  Raymond H. Chan,et al.  An Efficient Two-Phase ${\rm L}^{1}$-TV Method for Restoring Blurred Images with Impulse Noise , 2010, IEEE Transactions on Image Processing.

[9]  Mila Nikolova,et al.  Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers , 2002, SIAM J. Numer. Anal..

[10]  R. Wolke,et al.  Iteratively Reweighted Least Squares: Algorithms, Convergence Analysis, and Numerical Comparisons , 1988 .

[11]  Kazufumi Ito,et al.  On the Choice of the Regularization Parameter in Nonlinear Inverse Problems , 1992, SIAM J. Optim..

[12]  M. Nikolova A Variational Approach to Remove Outliers and Impulse Noise , 2004 .

[13]  K. Kunisch,et al.  Iterative choices of regularization parameters in linear inverse problems , 1998 .

[14]  Brendt Wohlberg,et al.  Efficient Minimization Method for a Generalized Total Variation Functional , 2009, IEEE Transactions on Image Processing.

[15]  Jun Zou,et al.  An improved model function method for choosing regularization parameters in linear inverse problems , 2002 .

[16]  V. Morozov On the solution of functional equations by the method of regularization , 1966 .

[17]  Peter R. Johnston,et al.  An Analysis of the Zero-Crossing Method for Choosing Regularization Parameters , 2002, SIAM J. Sci. Comput..

[18]  Michael Ulbrich,et al.  Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..

[19]  Karl Kunisch,et al.  Differentiability properties of the L1-tracking functional and application to the Robin inverse problem , 2004 .

[20]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[21]  Stefano Alliney,et al.  A property of the minimum vectors of a regularizing functional defined by means of the absolute norm , 1997, IEEE Trans. Signal Process..

[22]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[23]  Yann Gousseau,et al.  The TVL1 Model: A Geometric Point of View , 2009, Multiscale Model. Simul..

[24]  Junfeng Yang,et al.  An Efficient TVL1 Algorithm for Deblurring Multichannel Images Corrupted by Impulsive Noise , 2009, SIAM J. Sci. Comput..

[25]  Bangti Jin,et al.  A new choice rule for regularization parameters in Tikhonov regularization , 2011 .

[26]  Alan C. Bovik,et al.  Handbook of Image and Video Processing (Communications, Networking and Multimedia) , 2005 .

[27]  Wotao Yin,et al.  The Total Variation Regularized L1 Model for Multiscale Decomposition , 2007, Multiscale Model. Simul..

[28]  William K. Allard Total Variation Regularization for Image Denoising, III. Examples , 2009, SIAM J. Imaging Sci..

[29]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[30]  William K. Allard,et al.  Total Variation Regularization for Image Denoising, I. Geometric Theory , 2007, SIAM J. Math. Anal..

[31]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[32]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[33]  Jerry D. Gibson,et al.  Handbook of Image and Video Processing , 2000 .

[34]  D. Lorenz,et al.  A semismooth Newton method for Tikhonov functionals with sparsity constraints , 2007, 0709.3186.

[35]  Mila Nikolova,et al.  Efficient Minimization Methods of Mixed l2-l1 and l1-l1 Norms for Image Restoration , 2005, SIAM J. Sci. Comput..

[36]  Ivan P. Gavrilyuk,et al.  Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..