A Semismooth Newton Method for L1 Data Fitting with Automatic Choice of Regularization Parameters and Noise Calibration
暂无分享,去创建一个
[1] Mila Nikolova,et al. Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.
[2] Karl Kunisch,et al. Denoising of Smooth Images Using L1-Fitting , 2005, Computing.
[3] Tony F. Chan,et al. Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..
[4] Stefano Alliney,et al. An algorithm for the minimization of mixed l1 and l2 norms with application to Bayesian estimation , 1994, IEEE Trans. Signal Process..
[5] Yiqiu Dong,et al. An Efficient Primal-Dual Method for L1TV Image Restoration , 2009, SIAM J. Imaging Sci..
[6] H. Engl,et al. Convergence rates for Tikhonov regularisation of non-linear ill-posed problems , 1989 .
[7] H. Engl,et al. Regularization of Inverse Problems , 1996 .
[8] Raymond H. Chan,et al. An Efficient Two-Phase ${\rm L}^{1}$-TV Method for Restoring Blurred Images with Impulse Noise , 2010, IEEE Transactions on Image Processing.
[9] Mila Nikolova,et al. Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers , 2002, SIAM J. Numer. Anal..
[10] R. Wolke,et al. Iteratively Reweighted Least Squares: Algorithms, Convergence Analysis, and Numerical Comparisons , 1988 .
[11] Kazufumi Ito,et al. On the Choice of the Regularization Parameter in Nonlinear Inverse Problems , 1992, SIAM J. Optim..
[12] M. Nikolova. A Variational Approach to Remove Outliers and Impulse Noise , 2004 .
[13] K. Kunisch,et al. Iterative choices of regularization parameters in linear inverse problems , 1998 .
[14] Brendt Wohlberg,et al. Efficient Minimization Method for a Generalized Total Variation Functional , 2009, IEEE Transactions on Image Processing.
[15] Jun Zou,et al. An improved model function method for choosing regularization parameters in linear inverse problems , 2002 .
[16] V. Morozov. On the solution of functional equations by the method of regularization , 1966 .
[17] Peter R. Johnston,et al. An Analysis of the Zero-Crossing Method for Choosing Regularization Parameters , 2002, SIAM J. Sci. Comput..
[18] Michael Ulbrich,et al. Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..
[19] Karl Kunisch,et al. Differentiability properties of the L1-tracking functional and application to the Robin inverse problem , 2004 .
[20] Peter J. Rousseeuw,et al. Robust regression and outlier detection , 1987 .
[21] Stefano Alliney,et al. A property of the minimum vectors of a regularizing functional defined by means of the absolute norm , 1997, IEEE Trans. Signal Process..
[22] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[23] Yann Gousseau,et al. The TVL1 Model: A Geometric Point of View , 2009, Multiscale Model. Simul..
[24] Junfeng Yang,et al. An Efficient TVL1 Algorithm for Deblurring Multichannel Images Corrupted by Impulsive Noise , 2009, SIAM J. Sci. Comput..
[25] Bangti Jin,et al. A new choice rule for regularization parameters in Tikhonov regularization , 2011 .
[26] Alan C. Bovik,et al. Handbook of Image and Video Processing (Communications, Networking and Multimedia) , 2005 .
[27] Wotao Yin,et al. The Total Variation Regularized L1 Model for Multiscale Decomposition , 2007, Multiscale Model. Simul..
[28] William K. Allard. Total Variation Regularization for Image Denoising, III. Examples , 2009, SIAM J. Imaging Sci..
[29] P. Hansen. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .
[30] William K. Allard,et al. Total Variation Regularization for Image Denoising, I. Geometric Theory , 2007, SIAM J. Math. Anal..
[31] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.
[32] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[33] Jerry D. Gibson,et al. Handbook of Image and Video Processing , 2000 .
[34] D. Lorenz,et al. A semismooth Newton method for Tikhonov functionals with sparsity constraints , 2007, 0709.3186.
[35] Mila Nikolova,et al. Efficient Minimization Methods of Mixed l2-l1 and l1-l1 Norms for Image Restoration , 2005, SIAM J. Sci. Comput..
[36] Ivan P. Gavrilyuk,et al. Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..