Ultraluminous starbursts from supermassive black hole-induced outflows

I argue that there are two modes of global star formation. Discs and smaller spheroids form stars relatively inefficiently as a consequence of supernova-triggered negative feedback via a sequence of ministarbursts (S mode), whereas massive spheroids formed rapidly with high efficiency via the impact of active galactic nucleus (AGN) jet-triggered positive feedback (J mode) that generates and enhances ultraluminous starbursts. Supermassive black hole growth by accretion is favoured in the gas-rich protospheroid environment as mergers build up the mass of the host galaxy and provide a centrally concentrated gas supply. Quasi-spherical outflows arise and provide the source of porosity as the energetic jets from the accreting central supermassive black hole (SMBH) are isotropised by the inhomogeneous interstellar medium in the protospheroid core. Super-Eddington outflows occur and help to generate both the SMBH at high redshift and the strong positive feedback on protospheroid star formation that occurs as dense interstellar clouds are overpressured and collapse. SMBH form before the bulk of spheroid stars, and the correlation between spheroid velocity dispersion and supermassive black hole mass arises as AGN-triggered outflows limit the gas reservoir for spheroid star formation. The super-Eddington phase plausibly triggers a top-heavy initial mass function (IMF) in the region of influence of the SMBH. The Compton-cooled Eddington-limited outflow phase results in a spheroid core whose phase space density scales as the inverse 5/2 power of the core mass, and whose mass scales as the 2/3 power of SMBH mass. This latter scaling suggests that SMBH growth (and hence spheroid formation) is antihierarchical.

[1]  L. Ho,et al.  Multiwavelength Monitoring of the Dwarf Seyfert 1 Galaxy NGC 4395. I. A Reverberation-based Measurement of the Black Hole Mass , 2005, astro-ph/0506665.

[2]  G. Hasinger,et al.  Luminosity-dependent evolution of soft X-ray selected AGN : New Chandra and XMM-Newton surveys , 2005, astro-ph/0506118.

[3]  M. Begelman,et al.  Self-regulated black hole accretion, the M−σ relation and the growth of bulges in galaxies , 2005, astro-ph/0504400.

[4]  Research School of AstronomyAstrophysics,et al.  Interactions of jets with inhomogeneous cloudy media , 2005, astro-ph/0502367.

[5]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[6]  Alessandro Bressan,et al.  Can the faint submillimetre galaxies be explained in the Λ cold dark matter model , 2005 .

[7]  K. Gebhardt,et al.  Gemini Near Infrared Spectrograph Observations of the Central Supermassive Black Hole in Centaurus A , 2005, astro-ph/0501446.

[8]  J. Silk,et al.  Towards simulating star formation in the interstellar medium , 2004, astro-ph/0411383.

[9]  H Germany,et al.  Did most present-day spirals form during the last 8 Gyr? - A formation history with violent episodes revealed by panchromatic observations , 2004, astro-ph/0410518.

[10]  C. Martin Mapping Large-Scale Gaseous Outflows in Ultraluminous Galaxies with Keck II ESI Spectra: Variations in Outflow Velocity with Galactic Mass , 2004, astro-ph/0410247.

[11]  R. Bender,et al.  The Epochs of Early-Type Galaxy Formation as a Function of Environment , 2004, astro-ph/0410209.

[12]  E. Quataert,et al.  On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds , 2004, astro-ph/0406070.

[13]  R. Grijs,et al.  Starbursts – from 30 Doradus to Lyman-break galaxies , 2004 .

[14]  Gopal-Krishna,et al.  LOW-LEVEL RADIO EMISSION FROM RADIO GALAXIES AND IMPLICATIONS FOR THE LARGE SCALE STRUCTURE , 2004 .

[15]  S. Tremaine,et al.  The Centers of Early-type Galaxies with Hst. v. New Wfpc2 Photometry , 2004 .

[16]  Bradley M. Peterson,et al.  Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei , 2004 .

[17]  M. Pettini,et al.  The Spatial Clustering of Star-forming Galaxies at Redshifts 1.4 ≲ z ≲ 3.5 , 2004, astro-ph/0410165.

[18]  Xiaohui Fan,et al.  Resolved Molecular Gas in a Quasar Host Galaxy at Redshift z = 6.42 , 2004, astro-ph/0410229.

[19]  T. Treu,et al.  The Relation Between Black Hole Mass and Velocity Dispersion at z ~ 0.37 , 2004, astro-ph/0410007.

[20]  C. Baugh,et al.  The metal enrichment of the intracluster medium in hierarchical galaxy formation models , 2004, astro-ph/0408529.

[21]  H. Rottgering,et al.  Discovery of six Lyα emitters near a radio galaxy at z ∼ 5.2 , 2004 .

[22]  H. Rottgering,et al.  Properties of Lyα emitters around the radio galaxy MRC 0316 257 , 2005, astro-ph/0501259.

[23]  Hebrew University,et al.  Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei , 2004, astro-ph/0407297.

[24]  Amina Helmi,et al.  Velocity Trends in the Debris of Sagittarius and the Shape of the Dark Matter Halo of Our Galaxy , 2004, astro-ph/0406396.

[25]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[26]  M. Dietrich,et al.  Implications of Quasar Black Hole Masses at High Redshifts , 2004, astro-ph/0405126.

[27]  Z. Haiman Constraints from Gravitational Recoil on the Growth of Supermassive Black Holes at High Redshift , 2004, astro-ph/0404196.

[28]  D. Grupe,et al.  MBH-σ Relation for a Complete Sample of Soft X-Ray-selected Active Galactic Nuclei , 2004 .

[29]  P. Yoachim,et al.  The Formation of Dust Lanes: Implications for Galaxy Evolution , 2004, astro-ph/0402472.

[30]  J. Barnes Shock-induced star formation in a model of the Mice , 2004, astro-ph/0402248.

[31]  G. Granato,et al.  A Physical Model for the Coevolution of QSOs and Their Spheroidal Hosts , 2003, astro-ph/0307202.

[32]  A. Helmi,et al.  The Extragalactic Origin of the Arcturus Group , 2003, astro-ph/0311107.

[33]  A. King,et al.  Black Holes, Galaxy Formation, and the MBH-σ Relation , 2003, astro-ph/0308342.

[34]  M. Dopita,et al.  Giant Lyα Nebulae Associated with High-Redshift Radio Galaxies , 2003, astro-ph/0303637.

[35]  J. Shields,et al.  Quasar Elemental Abundances at High Redshifts , 2003, astro-ph/0302494.

[36]  Durham,et al.  What Shapes the Luminosity Function of Galaxies? , 2003, astro-ph/0302450.

[37]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[38]  J. Silk A new prescription for protogalactic feedback and outflows: where have all the baryons gone? , 2002, astro-ph/0212068.

[39]  C. Steidel,et al.  Galaxies and Intergalactic Matter at Redshift z ~ 3: Overview , 2002, astro-ph/0210314.

[40]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[41]  E. Grebel,et al.  The mass function of the Arches cluster from Gemini adaptive optics data , 2002, astro-ph/0206360.

[42]  L. Danese,et al.  Chemical evolution in a model for the joint formation of quasars and spheroids , 2002, astro-ph/0203506.

[43]  T. Heckman,et al.  The Metal Content of Dwarf Starburst Winds: Results from Chandra Observations of NGC 1569 , 2002, astro-ph/0203513.

[44]  S. Tremaine,et al.  Observational constraints on growth of massive black holes , 2002, astro-ph/0203082.

[45]  F. Palla,et al.  Accelerating Star Formation in Clusters and Associations , 2000 .

[46]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[47]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[48]  G. Efstathiou A model of supernova feedback in galaxy formation , 2000, astro-ph/0002245.

[49]  J. Mulchaey,et al.  The Properties of Poor Groups of Galaxies. III. The Galaxy Luminosity Function , 2000, astro-ph/0001495.

[50]  H. Rocha-Pinto,et al.  An Intermittent Star Formation History in a “Normal” Disk Galaxy: The Milky Way , 1999, The Astrophysical journal.

[51]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[52]  A. Chokshi Active Galactic Nuclei and Galaxy Formation , 1997 .

[53]  J. Silk Feedback, Disk Self-Regulation, and Galaxy Formation , 1996, astro-ph/9612117.

[54]  S. Tremaine,et al.  The centers of early-type galaxies with HST. IV. Central parameter relations , 1996, astro-ph/9610055.

[55]  D. Cioffi,et al.  Overpressured cocoons in extragalactic radio sources , 1989 .

[56]  J. Walsh,et al.  The giant halos of NGC 6543 and 6826 , 1989 .

[57]  M. Rees The radio/optical alignment of high-z radio galaxies: triggering of star formation in radio lobes , 1989 .

[58]  D. Young Star formation in radio galaxies at large redshift , 1989 .

[59]  R. Carlberg Phase space density in elliptical galaxies , 1986 .

[60]  R. Larson Bimodal star formation and remnant-dominated galactic models , 1986 .

[61]  Andrzej Soƚtan,et al.  Masses of quasars , 1982 .