Selective Association of Sterol Regulatory Element-binding Protein Isoforms with Target Promoters in Vivo*

The mRNAs for all three members of the sterol regulatory element-binding protein (SREBP) family are widely expressed, and the proteins are highly similar. They have potential to both hetero- and homodimerize through their bHLHLZ domains, so it has been difficult to definitively study the role of each one apart from the other two. In the current study, we have utilized cell lines that express only one functional SREBP and the chromatin immunoprecipitation technique to analyze individual SREBP binding to three specific target genes: hydroxymethylglutaryl-CoA reductase (Red), fatty acid synthase (FAS), and squalene synthase (SQS). Our studies show that SREBP-2 binds to promoters for all three genes, and in agreement with the original report using these cells, all three mRNAs are also induced. In the line expressing only SREBP-1a, mRNAs for Red and FAS are induced, but SQS is not. Chromatin immunoprecipitation also shows that SREBP-1a is recruited efficiently to Red and FAS promoters but not to SQS. This observation indicates SREBP-2 selectively binds the SQS promoter and is sufficient to explain the lack of SQS mRNA induction in the SREBP-1a-expressing cells. SREBP-1c protein was not stably recruited to any SREBP target promoter despite being fully active in DNA binding when purified from extracts of the corresponding cells. This is also sufficient to explain the lack of SREBP target gene induction by the singular expression of SREBP-1c. We also show that whereas SREBP-1a and -2 proteins interact efficiently with transcriptional co-activators that modify cellular chromatin, SREBP-1c does not. Taken together, our data support a model suggesting that chromatin modification is required during the initial stage of specific site recognition by SREBPs in native chromatin in vivo.

[1]  Heike Brand,et al.  Estrogen Receptor-α Directs Ordered, Cyclical, and Combinatorial Recruitment of Cofactors on a Natural Target Promoter , 2003, Cell.

[2]  Jay D. Horton,et al.  Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[3]  T. Osborne,et al.  Thyroid Hormone Regulation and Cholesterol Metabolism Are Connected through Sterol Regulatory Element-binding Protein-2 (SREBP-2)* , 2003, Journal of Biological Chemistry.

[4]  D. Sharma,et al.  Ordered recruitment of histone acetyltransferases and the TRAP/Mediator complex to thyroid hormone-responsive promoters in vivo , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[5]  T. Osborne CREating a SCAP-less liver keeps SREBPs pinned in the ER membrane and prevents increased lipid synthesis in response to low cholesterol and high insulin. , 2001, Genes & development.

[6]  Myles Brown,et al.  Cofactor Dynamics and Sufficiency in Estrogen Receptor–Regulated Transcription , 2000, Cell.

[7]  T. Osborne,et al.  Sterol Regulatory Element-binding Proteins (SREBPs): Key Regulators of Nutritional Homeostasis and Insulin Action* , 2000, The Journal of Biological Chemistry.

[8]  R. Goodman,et al.  CBP/p300 in cell growth, transformation, and development. , 2000, Genes & development.

[9]  T. Osborne,et al.  Nutrient regulation of gene expression by the sterol regulatory element binding proteins: increased recruitment of gene-specific coregulatory factors and selective hyperacetylation of histone H3 in vivo. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Tjian,et al.  Composite co-activator ARC mediates chromatin-directed transcriptional activation , 1999, Nature.

[11]  I. Shimomura,et al.  Nuclear Sterol Regulatory Element-binding Proteins Activate Genes Responsible for the Entire Program of Unsaturated Fatty Acid Biosynthesis in Transgenic Mouse Liver* , 1998, The Journal of Biological Chemistry.

[12]  J. Goldstein,et al.  Differential Stimulation of Cholesterol and Unsaturated Fatty Acid Biosynthesis in Cells Expressing Individual Nuclear Sterol Regulatory Element-binding Proteins* , 1998, The Journal of Biological Chemistry.

[13]  R. Tjian,et al.  Chromatin, TAFs, and a novel multiprotein coactivator are required for synergistic activation by Sp1 and SREBP-1a in vitro. , 1998, Genes & development.

[14]  P. Edwards,et al.  CBP Is Required for Sterol-regulated and Sterol Regulatory Element-binding Protein-regulated Transcription* , 1998, The Journal of Biological Chemistry.

[15]  R. Hammer,et al.  Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. , 1998, The Journal of clinical investigation.

[16]  I. Shimomura,et al.  Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  I. Shechter,et al.  Differential Transcriptional Regulation of the Human Squalene Synthase Gene by Sterol Regulatory Element-binding Proteins (SREBP) 1a and 2 and Involvement of 5′ DNA Sequence Elements in the Regulation* , 1998, Journal of Biological Chemistry.

[18]  K. Dooley,et al.  Sterol Regulation of 3-Hydroxy-3-Methylglutaryl-coenzyme A Synthase Gene through a Direct Interaction Between Sterol Regulatory Element Binding Protein and the Trimeric CCAAT-binding Factor/Nuclear Factor Y* , 1998, The Journal of Biological Chemistry.

[19]  M. T. Hasan,et al.  Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. , 1997, Molecular cell.

[20]  R. Hammer,et al.  Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. , 1997, The Journal of clinical investigation.

[21]  B. Howard,et al.  The Transcriptional Coactivators p300 and CBP Are Histone Acetyltransferases , 1996, Cell.

[22]  R. Tjian,et al.  SREBP transcriptional activity is mediated through an interaction with the CREB-binding protein. , 1996, Genes & development.

[23]  J. Rosenfeld,et al.  A Direct Role for Sterol Regulatory Element Binding Protein in Activation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Gene (*) , 1996, The Journal of Biological Chemistry.

[24]  B. Spiegelman,et al.  Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. , 1998, The Journal of clinical investigation.