Introducing automated melanoma detection in a topic map based image retrieval system

Early diagnosis is the most reliable solution for an effective treatment of melanoma. There is an ongoing research effort to develop computer aided imaging tools and functional content-based image retrieval systems as diagnostic support to dermatologists. Following this spirit, a Topic Map based management and retrieval system for melanoma images has been developed. Currently, this research work focuses on developing 'ABCD' calculation program for Automated Melanoma Detection and employing it in the TM-based system. This paper introduces the design and methodology towards this direction.

[1]  H P Soyer,et al.  Dermoscopy of pigmented skin lesions--a valuable tool for early diagnosis of melanoma. , 2001, The Lancet. Oncology.

[2]  Shih-Fu Chang,et al.  Image Retrieval: Current Techniques, Promising Directions, and Open Issues , 1999, J. Vis. Commun. Image Represent..

[3]  Philippe Schmid-Saugeona,et al.  Towards a computer-aided diagnosis system for pigmented skin lesions. , 2003, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[4]  Z. Argényi Dermoscopy (epiluminescence microscopy) of pigmented skin lesions. Current status and evolving trends. , 1997, Dermatologic clinics.

[5]  E. Claridge,et al.  Computer screening for early detection of melanoma—is there a future? , 1995, The British journal of dermatology.

[6]  A. Green,et al.  Computer image analysis in the diagnosis of melanoma. , 1994, Journal of the American Academy of Dermatology.

[7]  J. Todd Book Review: Digital image processing (second edition). By R. C. Gonzalez and P. Wintz, Addison-Wesley, 1987. 503 pp. Price: £29.95. (ISBN 0-201-11026-1) , 1988 .

[8]  Elena Paslaru Bontas Simperl,et al.  Experiences Using Semantic Web Technologies to Realize an Information Retrieval System for Pathology , 2004, Berliner XML Tage.

[9]  H P Soyer,et al.  Internet‐based program for automatic discrimination of dermoscopic images between melanomas and Clark naevi , 2004, The British journal of dermatology.

[10]  C Bartoli,et al.  Results obtained by using a computerized image analysis system designed as an aid to diagnosis of cutaneous melanoma , 1992, Melanoma research.

[11]  J. Mayer,et al.  Systematic review of the diagnostic accuracy of dermatoscopy in detecting malignant melanoma , 1997, The Medical journal of Australia.

[12]  Antoine Geissbühler,et al.  A Review of Content{Based Image Retrieval Systems in Medical Applications { Clinical Bene(cid:12)ts and Future Directions , 2022 .

[13]  F Gschnait,et al.  [The ABCD rule in dermatoscopy: analysis of 500 melanocytic lesions]. , 1998, Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete.

[14]  Akifumi Makinouchi,et al.  Semantic Approach to Image Database Classification and Retrieval (「夏のデータベースワークショップ(DBWS2003)」一般) , 2003 .

[15]  J C Briggs,et al.  Cutaneous melanoma. , 1993, Journal of the American Academy of Dermatology.

[16]  S. Menzies,et al.  Accuracy of computer diagnosis of melanoma: a quantitative meta-analysis. , 2003, Archives of dermatology.

[17]  Pavlos I. Lazaridis,et al.  Introducing an advanced topic map software tool towards the deployment of a TM-based system for managing melanoma cases images , 2007 .

[18]  Rudolf Hanka,et al.  A review of intelligent content-based indexing and browsing of medical images , 1999 .

[19]  R. H. Moss,et al.  Digital imaging in dermatology. , 1992, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[20]  James A. Hendler,et al.  The Semantic Web" in Scientific American , 2001 .

[21]  Michael G. Strintzis,et al.  Still Image Segmentation Tools For Object-Based Multimedia Applications , 2004, Int. J. Pattern Recognit. Artif. Intell..

[22]  Clement T. Yu,et al.  Segmentation of skin cancer images , 1999, Image Vis. Comput..

[23]  Scott W Menzies,et al.  Cutaneous melanoma: making a clinical diagnosis, present and future , 2006, Dermatologic therapy.

[24]  R. Johr Dermoscopy: alternative melanocytic algorithms-the ABCD rule of dermatoscopy, Menzies scoring method, and 7-point checklist. , 2002, Clinics in dermatology.

[25]  Enrico Blanzieri,et al.  A multiple classifier system for early melanoma diagnosis , 2003, Artif. Intell. Medicine.

[26]  W V Stoecker,et al.  Digital imaging in dermatology. , 1992, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[27]  Pavlos I. Lazaridis,et al.  Applying topic map technology to create a knowledge base of melanoma images for diagnostic support , 2007 .

[28]  L. Naldi,et al.  The epidemiology of skin cancer , 2002, The British journal of dermatology.

[29]  G Rassner,et al.  Clinical and Laboratory Investigations Digital image analysis for diagnosis of cutaneous melanoma. Development of a highly effective computer algorithm based on analysis of 837 melanocytic lesions , 2004 .

[30]  Robert Feldmann,et al.  Die ABCD Regel in der Dermatoskopie: Analyse von 500 melanozytären Läsionen , 1998, Der Hautarzt.

[31]  H. Kittler,et al.  Epiluminescence microscopy-based classification of pigmented skin lesions using computerized image analysis and an artificial neural network , 1998, Melanoma research.