Factors influencing methicillin resistance in staphylococci

Abstract. Methicillin resistance in staphylococci is due to an acquired penicillin-binding protein, PBP2′ (PBP2a). This additional PBP, encoded by mecA, confers an intrinsic resistance to all β-lactams and their derivatives. Resistance levels in methicillin-resistant Staphylococcus aureus (MRSA) depend on efficient PBP2′ production and are modulated by chromosomal factors. Depending on the genetic background of the strain that acquired mecA, resistance levels range from phenotypically susceptible to highly resistant. Characteristic for most MRSA is the heterogeneous expression of resistance, which is due to the segregation of a more highly resistant subpopulation upon challenge with methicillin. Maximal expression of resistance by PBP2′ requires the efficient and correct synthesis of the peptidoglycan precursor. Genes involved in cell-wall precursor formation and turnover, regulation, transport, and signal transduction may determine the level of resistance that is expressed. At this stage, however, there is no information available on the functionality or efficacy of such factors in clinical isolates in relation to methicillin resistance levels.

[1]  T. Yamaguchi,et al.  Cloning and characterization of a gene affecting the methicillin resistance level and the autolysis rate in Staphylococcus aureus , 1994, Journal of bacteriology.

[2]  A. Tomasz,et al.  Reduced methicillin resistance in a new Staphylococcus aureus transposon mutant that incorporates muramyl dipeptides into the cell wall peptidoglycan. , 1994, The Journal of biological chemistry.

[3]  J. Ghuysen,et al.  Multimodular Penicillin-Binding Proteins: An Enigmatic Family of Orthologs and Paralogs , 1998, Microbiology and Molecular Biology Reviews.

[4]  P. Reynolds,et al.  Methicillin resistance in Staphylococcus epidermidis , 1989 .

[5]  B. Berger-Bächi,et al.  The femC locus of Staphylococcus aureus required for methicillin resistance includes the glutamine synthetase operon , 1994, Journal of bacteriology.

[6]  B. Berger-Bächi,et al.  Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus , 1997, Journal of bacteriology.

[7]  James M. Musser,et al.  Evolutionary genomics of Staphylococcus aureus: Insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  H. Zhang,et al.  A Proteolytic Transmembrane Signaling Pathway and Resistance to β-Lactams in Staphylococci , 2001, Science.

[9]  A. Troelstra,et al.  Evidence for in-vivo transfer of mecA DNA between strains of Staphylococcus aureus , 2001, The Lancet.

[10]  A. Tomasz,et al.  Characterization of the murMN operon involved in the synthesis of branched peptidoglycan peptides in Streptococcus pneumoniae. , 2000, The Journal of biological chemistry.

[11]  B. Berger-Bächi,et al.  Mechanisms of heteroresistance in methicillin-resistant Staphylococcus aureus , 1994, Antimicrobial Agents and Chemotherapy.

[12]  S. Clarke,et al.  The signal transducer (BlaRI) and the repressor (BlaI) of the Staphylococcus aureus beta-lactamase operon are inducible. , 2001, Microbiology.

[13]  S. Imai,et al.  Transposon-mediated insertional mutagenesis of the D-alanyl-lipoteichoic acid (dlt) operon raises methicillin resistance in Staphylococcus aureus. , 2000, Research in microbiology.

[14]  A. Tomasz,et al.  Recruitment of the mecA Gene Homologue ofStaphylococcus sciuri into a Resistance Determinant and Expression of the Resistant Phenotype inStaphylococcus aureus , 2001, Journal of bacteriology.

[15]  T. Fujimura,et al.  Increase of methicillin resistance in Staphylococcus aureus caused by deletion of a gene whose product is homologous to lytic enzymes , 1997, Journal of bacteriology.

[16]  B. Berger-Bächi,et al.  Survey of the methicillin resistance-associated genes mecA, mecR1-mecI, and femA-femB in clinical isolates of methicillin-resistant Staphylococcus aureus , 1992, Antimicrobial Agents and Chemotherapy.

[17]  Teruyo Ito,et al.  A New Class of Genetic Element, Staphylococcus Cassette Chromosome mec, Encodes Methicillin Resistance in Staphylococcus aureus , 2000, Antimicrobial Agents and Chemotherapy.

[18]  R. Hakenbeck,et al.  The fib locus in Streptococcus pneumoniae is required for peptidoglycan crosslinking and PBP-mediated beta-lactam resistance. , 2000, FEMS microbiology letters.

[19]  P. Stewart,et al.  Resistance heterogeneity in methicillin-resistant Staphylococcus aureus , 1984 .

[20]  S. Cohen,et al.  Constitutive Penicillinase Formation in Staphylococcus aureus Owing to a Mutation Unlinked to the Penicillinase Plasmid , 1968, Journal of bacteriology.

[21]  A. Tomasz,et al.  Complementation of the Essential Peptidoglycan Transpeptidase Function of Penicillin-Binding Protein 2 (PBP2) by the Drug Resistance Protein PBP2A in Staphylococcus aureus , 2001, Journal of bacteriology.

[22]  A. Tomasz,et al.  Molecular aspects of methicillin resistance in Staphylococcus aureus. , 1994, The Journal of antimicrobial chemotherapy.

[23]  A. Tomasz,et al.  Abnormal Peptidoglycan Produced in a Methicillin-Resistant Strain of Staphylococcus aureus Grown in the Presence of Methicillin: Functional Role for Penicillin-Binding Protein 2A in Cell Wall Synthesis , 1993, Antimicrobial Agents and Chemotherapy.

[24]  R. Lewis,et al.  MecI represses synthesis from the β-lactamase operon of Staphylococcus aureus , 2000 .

[25]  A. Tomasz,et al.  An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  B. Berger-Bächi,et al.  glmM Operon and Methicillin-ResistantglmM Suppressor Mutants in Staphylococcus aureus , 1999, Antimicrobial Agents and Chemotherapy.

[27]  G. Choi,et al.  Cloning and sequencing of the gene, fmtC, which affects oxacillin resistance in methicillin-resistant Staphylococcus aureus. , 2001, FEMS microbiology letters.

[28]  F. Ishino,et al.  Evolution of an inducible penicillin‐target protein in methicillin‐resistant Staphylococcus aureus by gene fusion , 1987, FEBS letters.

[29]  G. Archer,et al.  Origin and evolution of DNA associated with resistance to methicillin in staphylococci. , 1994, Trends in microbiology.

[30]  W. Fischer,et al.  The absence of D-alanine from lipoteichoic acid and wall teichoic acid alters surface charge, enhances autolysis and increases susceptibility to methicillin in Bacillus subtilis. , 1997, Microbiology.

[31]  B. Berger-Bächi,et al.  Impact of sar and agr on methicillin resistance in Staphylococcus aureus. , 1996, FEMS microbiology letters.

[32]  H. de Lencastre,et al.  Mrp--a new auxiliary gene essential for optimal expression of methicillin resistance in Staphylococcus aureus. , 1999, Microbial drug resistance.

[33]  B. Berger-Bächi,et al.  Correlation between regulation of mecA transcription and expression of methicillin resistance in staphylococci , 1992, Antimicrobial Agents and Chemotherapy.

[34]  A. Tomasz,et al.  Sigma-B, a putative operon encoding alternate sigma factor of Staphylococcus aureus RNA polymerase: molecular cloning and DNA sequencing , 1996, Journal of bacteriology.

[35]  M. Jevons,et al.  Cellbenin-resistant staphylococci. , 1961 .

[36]  R. Knox,et al.  “Celbenin” - resistant Staphylococci , 1961 .

[37]  K. Hiramatsu,et al.  Eagle-Type Methicillin Resistance: New Phenotype of High Methicillin Resistance under mec Regulator Gene Control , 2001, Antimicrobial Agents and Chemotherapy.

[38]  R. Lewis,et al.  MecI represses synthesis from the beta-lactamase operon of Staphylococcus aureus. , 2000, The Journal of antimicrobial chemotherapy.

[39]  M. Sugai,et al.  Original articles Tn551-mediated insertional inactivation of the fmtB gene encoding a cell wall-associated protein abolishes methicillin resistance in Staphylococcus aureus , 2000 .

[40]  A. Tomasz,et al.  The femR315 gene from Staphylococcus aureus, the interruption of which results in reduced methicillin resistance, encodes a phosphoglucosamine mutase , 1997, Journal of bacteriology.

[41]  M. Kuroda,et al.  The emergence and evolution of methicillin-resistant Staphylococcus aureus. , 2001, Trends in microbiology.

[42]  S. Hori,et al.  Suppression of methicillin resistance in a mecA-containing pre-methicillin-resistant Staphylococcus aureus strain is caused by the mecI-mediated repression of PBP 2' production , 1996, Antimicrobial agents and chemotherapy.

[43]  B. Berger-Bächi,et al.  The essential Staphylococcus aureus gene fmhB is involved in the first step of peptidoglycan pentaglycine interpeptide formation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[44]  B. Berger-Bächi,et al.  Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus , 1993, Journal of bacteriology.

[45]  M. Sugai,et al.  Tn551-mediated insertional inactivation of the fmtB gene encoding a cell wall-associated protein abolishes methicillin resistance in Staphylococcus aureus. , 2000, The Journal of antimicrobial chemotherapy.

[46]  B. Berger-Bächi,et al.  Mapping and characterization of multiple chromosomal factors involved in methicillin resistance in Staphylococcus aureus , 1992, Antimicrobial Agents and Chemotherapy.

[47]  M. Sugai,et al.  Characterization of fmtA, a Gene That Modulates the Expression of Methicillin Resistance in Staphylococcus aureus , 1999, Antimicrobial Agents and Chemotherapy.

[48]  G. Archer,et al.  Transcription of the Gene Mediating Methicillin Resistance in Staphylococcus aureus(mecA) Is Corepressed but Not Coinduced by CognatemecA and β-Lactamase Regulators , 2001, Journal of bacteriology.

[49]  Michael Otto,et al.  Staphylococcus aureus Resistance to Human Defensins and Evasion of Neutrophil Killing via the Novel Virulence Factor Mprf Is Based on Modification of Membrane Lipids with l-Lysine , 2001, The Journal of experimental medicine.

[50]  A. Tomasz,et al.  Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin. , 1999, Microbial drug resistance.

[51]  P. Giesbrecht,et al.  Staphylococcal Cell Wall: Morphogenesis and Fatal Variations in the Presence of Penicillin , 1998, Microbiology and Molecular Biology Reviews.