Automatic control of phase synchronization in coupled complex oscillators

We present an automatic control method for phase locking of regular and chaotic non-identical oscillations, when all subsystems interact via feedback. This method is based on the well known principle of feedback control which takes place in nature and is successfully used in engineering. In contrast to unidirectional and bidirectional coupling, our approach supposes the existence of a special controller, whose input is given by a quadratic form of the coordinates of the individual systems and its output is a result of the application of a linear differential operator. Using several examples we demonstrate the effectiveness of our approach to achieve controlled phase synchronization.

[1]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[2]  R. Eckhorn,et al.  Coherent oscillations: A mechanism of feature linking in the visual cortex? , 1988, Biological Cybernetics.

[3]  H. Haken,et al.  A theoretical model of phase transitions in human hand movements , 2004, Biological Cybernetics.

[4]  J. Kurths,et al.  Three types of transitions to phase synchronization in coupled chaotic oscillators. , 2003, Physical review letters.

[5]  Jürgen Kurths,et al.  Anomalous phase synchronization in populations of nonidentical oscillators. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Bernd Blasius,et al.  Using nonisochronicity to control synchronization in ensembles of nonidentical oscillators. , 2003, Chaos.

[7]  H. Nijmeijer,et al.  Partial synchronization: from symmetry towards stability , 2002 .

[8]  Ming-Chung Ho,et al.  Phase and anti-phase synchronization of two chaotic systems by using active control , 2002 .

[9]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[10]  R Huerta,et al.  Dynamical encoding by networks of competing neuron groups: winnerless competition. , 2001, Physical review letters.

[11]  E. Ott,et al.  Detecting phase synchronization in a chaotic laser array. , 2001, Physical review letters.

[12]  V N Belykh,et al.  Cluster synchronization modes in an ensemble of coupled chaotic oscillators. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[14]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[15]  Belykh,et al.  Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Lewi Stone,et al.  Chaos and phase Synchronization in Ecological Systems , 2000, Int. J. Bifurc. Chaos.

[17]  S. Boccaletti,et al.  The control of chaos: theory and applications , 2000 .

[18]  Bernd Blasius,et al.  Complex dynamics and phase synchronization in spatially extended ecological systems , 1999, Nature.

[19]  L. Wilkens,et al.  Synchronization of the Noisy Electrosensitive Cells in the Paddlefish , 1999 .

[20]  H. Nijmeijer,et al.  Cooperative oscillatory behavior of mutually coupled dynamical systems , 2001 .

[21]  A. Selverston,et al.  Synchronous Behavior of Two Coupled Biological Neurons , 1998, chao-dyn/9811010.

[22]  Jürgen Kurths,et al.  Detection of n:m Phase Locking from Noisy Data: Application to Magnetoencephalography , 1998 .

[23]  J. Kurths,et al.  Heartbeat synchronized with ventilation , 1998, Nature.

[24]  Mark Hess,et al.  TRANSITION TO PHASE SYNCHRONIZATION OF CHAOS , 1998 .

[25]  J. Kurths,et al.  Phase Synchronization of Chaotic Oscillators by External Driving , 1997 .

[26]  Konnur Equivalence of Synchronization and Control of Chaotic Systems. , 1996, Physical review letters.

[27]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[28]  Hermann Haken,et al.  Synchronization in networks of limit cycle oscillators , 1996 .

[29]  Ljupco Kocarev,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical review letters.

[30]  Grigory V. Osipov,et al.  Stability, Structures and Chaos in Nonlinear Synchronization Networks , 1995 .

[31]  Roy,et al.  Experimental synchronization of chaotic lasers. , 1994, Physical review letters.

[32]  Tim C. Newell,et al.  Synchronization of chaos using proportional feedback. , 1994 .

[33]  Michael Peter Kennedy,et al.  Chaos shift keying : modulation and demodulation of a chaotic carrier using self-sychronizing chua"s circuits , 1993 .

[34]  Roy,et al.  Coherence and phase dynamics of spatially coupled solid-state lasers. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[35]  Grebogi,et al.  Synchronization of chaotic trajectories using control. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[37]  Dmitry E. Postnov,et al.  SYNCHRONIZATION OF CHAOS , 1992 .

[38]  P. Alstrøm,et al.  Collective dynamics of coupled modulated oscillators with random pinning , 1992 .

[39]  E. Stone,et al.  Frequency entrainment of a phase coherent attractor , 1992 .

[40]  Mehta,et al.  Controlling chaos to generate aperiodic orbits. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[41]  Roy,et al.  Observation of antiphase states in a multimode laser. , 1990, Physical review letters.

[42]  G. Ermentrout,et al.  Amplitude response of coupled oscillators , 1990 .

[43]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[44]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[45]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[46]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[47]  P. Holmes,et al.  The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model , 1982, Journal of mathematical biology.

[48]  Y. Aizawa Synergetic Approach to the Phenomena of Mode-Locking in Nonlinear Systems , 1976 .

[49]  O. Rössler An equation for continuous chaos , 1976 .

[50]  J. Salz,et al.  Synchronization Systems in Communication and Control , 1973, IEEE Trans. Commun..

[51]  William C. Lindsey,et al.  SYNCHRONIZATION SYSTEMS in Communication and Control , 1972 .

[52]  M. Rosenzweig Paradox of Enrichment: Destabilization of Exploitation Ecosystems in Ecological Time , 1971, Science.

[53]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[54]  Balth van der Pol Jun. Doct.Sc. LXXXV. On oscillation hysteresis in a triode generator with two degrees of freedom , 1922 .