Cauchy's Continuum
暂无分享,去创建一个
[1] Edwin Hewitt,et al. Rings of real-valued continuous functions. I , 1948 .
[2] Augustin-Louis Cauchy. Oeuvres complètes: ANALYSE MATHÉMATIQUE. — Note sur les séries convergentes dont les divers termes sont des fonctions continues d'une variable réelle ou imaginaire, entre des limites données , 2009 .
[3] D. Laugwitz. Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820 , 1989 .
[4] Jérôme Havenel. Peirce's Clarifications of Continuity , 2008 .
[5] Lorenzo Magnani,et al. Perceiving the Infinite and the Infinitesimal World: Unveiling and Optical Diagrams in Mathematics , 2005 .
[6] Leif Arkeryd,et al. Intermolecular forces of infinite range and the Boltzmann equation , 1981 .
[7] D. Laugwitz,et al. Eine Erweiterung der Infinitesimalrechnung , 1958 .
[8] Giuseppe Veronese. Fondamenti di geometria a più dimensioni e a più specie di unità rettilinee esposti in forma elementare / Giuseppe Veronese , 1891 .
[9] K. D. Stroyan. Uniform Continuity and Rates of Growth of Meromorphic Functions1) , 1972 .
[10] D. J. Winter. A History of Algebra. , 1988 .
[11] Lígia Arantes Sad,et al. Cauchy and the problem of point-wise convergence , 2001 .
[12] Philip Ehrlich,et al. Real Numbers, Generalizations of the Reals and Theories of Continua (Synthese Library, Vol. 242) , 1994 .
[13] Leif Arkeryd. Nonstandard Analysis , 2005, Am. Math. Mon..
[14] Augustin-Louis Cauchy. Oeuvres complètes: Mémoire sur les développements des fonctions en séries périodiques , 2009 .
[15] André Weil,et al. Number Theory: An approach through history From Hammurapi to Legendre , 1984 .
[16] Antoni Malet,et al. The Mathematical Career of Pierre de Fermat, 1601-1665 , 2001 .
[17] Leonard Gillman,et al. Rings of continuous functions , 1961 .
[18] A. Weil. Review: M. S. Mahoney, The mathematical career of Pierre de Fermat , 1973 .
[19] Mikhail G. Katz,et al. From discrete arithmetic to arithmetic of the continuum , 2013 .
[20] C. Guiterrez. Plato's Ghost , 2009 .
[21] Alexandre Borovik,et al. Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.
[22] W. Whewell,et al. The mathematical works , 1973 .
[23] David Sherry,et al. The wake of Berkeley's analyst: Rigor mathematicae? , 1987 .
[24] Mikhail G. Katz,et al. A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography , 2011, 1104.0375.
[25] R. H. BING,et al. Mathematical Work , 2007 .
[26] B. L. Waerden,et al. A history of algebra : from Al-Khwārizmī to Emmy Noether , 1985 .
[27] P. Wallis,et al. A Source Book in Mathematics, 1200-1800 , 1971, The Mathematical Gazette.
[28] Martin Davis,et al. Applied Nonstandard Analysis , 1977 .
[29] Helmut Hasse,et al. Number Theory , 2020, An Introduction to Probabilistic Number Theory.
[30] Felix Klein. Elementarmathematik vom höheren Standpunkte aus , 1967 .
[31] Augustin-Louis Cauchy. Oeuvres complètes: LEÇONS SUR LE CALCUL DIFFÉRENTIEL , 2009 .
[32] Stephen W. Hawking,et al. God Created the Integers: The Mathematical Breakthroughs That Changed History , 2005 .
[33] A. Cauchy. Cours d'analyse de l'École royale polytechnique , 1821 .
[34] M. White. From a philosophical point of view , 2004 .
[35] Nicolas Bourbaki,et al. Elements of mathematics , 2004 .
[36] Ian Stewart,et al. From Here to Infinity , 1996 .
[37] Vieri Benci,et al. Alpha-theory: An elementary axiomatics for nonstandard analysis , 2003 .
[38] A. Robinson. Numbers and Models , Standard and Nonstandard , 2010 .
[39] Solomon Feferman,et al. Conceptions of the Continuum , 2009 .
[40] Philip Ehrlich,et al. The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .
[41] A. Oestreich,et al. Letter to the Editors , 2009, Skeletal Radiology.
[42] Madeline Muntersbjorn,et al. Representational Innovation and Mathematical Ontology , 2004, Synthese.
[43] Mariano Hormigón Blánquez. Cours d'analyse de l'école royale polytechnique , 2004 .
[44] Gert Schubring,et al. Conflicts between Generalization, Rigor and Intuition. Number Concepts Underlying the Development of Analysis in 17th-19th Century France and Germany , 2005 .
[45] Carl B. Boyer,et al. The Concepts of the Calculus , 1940 .
[46] A. Cauchy. Résumé des leçons données à l'École royale polytechnique, sur le calcul infinitésimal , 2009 .
[47] Robert H. Anderson,et al. A Source Book , 1995 .
[48] Detlef Laugwitz. Infinitely small quantities in Cauchy's textbooks , 1987 .
[49] G. Hanna,et al. Explanation and proof in mathematics : philosophical and educational perspectives , 2009 .
[50] C. S. Pierce,et al. The New Elements of Mathematics. Vol III Parts 1 and 2. Mathematical Miscellanea , 1982 .
[51] S. Albeverio. Nonstandard Methods in Stochastic Analysis and Mathematical Physics , 1986 .
[52] J. Stillwell. Yearning for the Impossible: The Surprising Truths of Mathematics , 2018 .
[53] Heinrich Rust. Operational Semantics for Timed Systems: A Non-standard Approach to Uniform Modeling of Timed and Hybrid Systems , 2005, Lecture Notes in Computer Science.
[54] D. Tall. Looking at graphs through infinitesimal microscopes, windows and telescopes , 1980, The Mathematical Gazette.
[55] K. Barner. Fermats «adæquare» – und kein Ende? , 2011 .
[56] Ekkehard Kopp,et al. On Cauchy's Notion of Infinitesimal , 1988, The British Journal for the Philosophy of Science.
[57] P. Jourdain. The Origin of Cauchy's Conceptions of a Definite Integral and of the Continuity of a Function , 1913, Isis.
[58] F. B.,et al. The Concepts of the Calculus , 1939, Nature.
[59] Herbert Breger. The mysteries of adaequare: A vindication of fermat , 1994 .
[60] Mikhail G. Katz,et al. Zooming in on infinitesimal 1–.9.. in a post-triumvirate era , 2010, 1003.1501.
[61] J. Bell. A primer of infinitesimal analysis , 1998 .
[62] V. Benci,et al. A purely algebraic characterization of the hyperreal numbers , 2005 .
[63] Roger North,et al. The Mathematical Career of Pierre de Fermat , 1974, The Mathematical Gazette.
[64] D. Tall,et al. THE TENSION BETWEEN INTUITIVE INFINITESIMALS AND FORMAL MATHEMATICAL ANALYSIS , 2011, 1110.5747.
[65] Leonard Gillman,et al. Rings of continuous functions , 1961 .
[66] P. Zsombor-Murray,et al. Elementary Mathematics from an Advanced Standpoint , 1940, Nature.
[67] Lorenzo Magnani,et al. Mathematics through Diagrams: Microscopes in Non-Standard and Smooth Analysis , 2007, Model-Based Reasoning in Science, Technology, and Medicine.
[68] Michael S. Mahoney. The mathematical career of Pierre de Fermat, 1601-1665 , 1996 .
[69] Kajsa Bråting,et al. A new look at E.G. Björling and the Cauchy sum theorem , 2007 .
[70] Jerzy Loś,et al. Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables D'algèbres , 1955 .
[71] Walter Felscher. Bolzano, Cauchy, Epsilon, Delta , 2000, Am. Math. Mon..
[72] H. Jerome Keisler,et al. The Hyperreal Line , 1994 .
[73] C. Hartshorne,et al. Collected Papers of Charles Sanders Peirce , 1935, Nature.
[74] C. Allen,et al. Stanford Encyclopedia of Philosophy , 2011 .
[75] A. Robinson. Non-standard analysis , 1966 .
[76] Karin U. Katz,et al. When is .999... less than 1? , 2010, The Mathematics Enthusiast.
[77] H. Keisler. Elementary Calculus: An Infinitesimal Approach , 1976 .
[78] J. Gray. Plato's Ghost: The Modernist Transformation of Mathematics , 2008 .
[79] R. Ely. Nonstandard Student Conceptions About Infinitesimals , 2010 .
[80] Jeremy Gray,et al. Number theory: An approach through history; from Hammurapi to Legendre , 1986 .