Cauchy's Continuum

Cauchy's sum theorem of 1821 has been the subject of rival interpretations ever since Robinson proposed a novel reading in the 1960s. Some claim that Cauchy modified the hypothesis of his theorem in 1853 by introducing uniform convergence, whose traditional formulation requires a pair of independent variables. Meanwhile, Cauchy's hypothesis is formulated in terms of a single variable x, rather than a pair of variables, and requires the error term rn = rn(x) to go to zero at all values of x, including the infinitesimal value generated by explicitly specified by Cauchy. If one wishes to understand Cauchy's modification/clarification of the hypothesis of the sum theorem in 1853, one has to jettison the automatic translation-to-limits.

[1]  Edwin Hewitt,et al.  Rings of real-valued continuous functions. I , 1948 .

[2]  Augustin-Louis Cauchy Oeuvres complètes: ANALYSE MATHÉMATIQUE. — Note sur les séries convergentes dont les divers termes sont des fonctions continues d'une variable réelle ou imaginaire, entre des limites données , 2009 .

[3]  D. Laugwitz Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820 , 1989 .

[4]  Jérôme Havenel Peirce's Clarifications of Continuity , 2008 .

[5]  Lorenzo Magnani,et al.  Perceiving the Infinite and the Infinitesimal World: Unveiling and Optical Diagrams in Mathematics , 2005 .

[6]  Leif Arkeryd,et al.  Intermolecular forces of infinite range and the Boltzmann equation , 1981 .

[7]  D. Laugwitz,et al.  Eine Erweiterung der Infinitesimalrechnung , 1958 .

[8]  Giuseppe Veronese Fondamenti di geometria a più dimensioni e a più specie di unità rettilinee esposti in forma elementare / Giuseppe Veronese , 1891 .

[9]  K. D. Stroyan Uniform Continuity and Rates of Growth of Meromorphic Functions1) , 1972 .

[10]  D. J. Winter A History of Algebra. , 1988 .

[11]  Lígia Arantes Sad,et al.  Cauchy and the problem of point-wise convergence , 2001 .

[12]  Philip Ehrlich,et al.  Real Numbers, Generalizations of the Reals and Theories of Continua (Synthese Library, Vol. 242) , 1994 .

[13]  Leif Arkeryd Nonstandard Analysis , 2005, Am. Math. Mon..

[14]  Augustin-Louis Cauchy Oeuvres complètes: Mémoire sur les développements des fonctions en séries périodiques , 2009 .

[15]  André Weil,et al.  Number Theory: An approach through history From Hammurapi to Legendre , 1984 .

[16]  Antoni Malet,et al.  The Mathematical Career of Pierre de Fermat, 1601-1665 , 2001 .

[17]  Leonard Gillman,et al.  Rings of continuous functions , 1961 .

[18]  A. Weil Review: M. S. Mahoney, The mathematical career of Pierre de Fermat , 1973 .

[19]  Mikhail G. Katz,et al.  From discrete arithmetic to arithmetic of the continuum , 2013 .

[20]  C. Guiterrez Plato's Ghost , 2009 .

[21]  Alexandre Borovik,et al.  Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.

[22]  W. Whewell,et al.  The mathematical works , 1973 .

[23]  David Sherry,et al.  The wake of Berkeley's analyst: Rigor mathematicae? , 1987 .

[24]  Mikhail G. Katz,et al.  A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography , 2011, 1104.0375.

[25]  R. H. BING,et al.  Mathematical Work , 2007 .

[26]  B. L. Waerden,et al.  A history of algebra : from Al-Khwārizmī to Emmy Noether , 1985 .

[27]  P. Wallis,et al.  A Source Book in Mathematics, 1200-1800 , 1971, The Mathematical Gazette.

[28]  Martin Davis,et al.  Applied Nonstandard Analysis , 1977 .

[29]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[30]  Felix Klein Elementarmathematik vom höheren Standpunkte aus , 1967 .

[31]  Augustin-Louis Cauchy Oeuvres complètes: LEÇONS SUR LE CALCUL DIFFÉRENTIEL , 2009 .

[32]  Stephen W. Hawking,et al.  God Created the Integers: The Mathematical Breakthroughs That Changed History , 2005 .

[33]  A. Cauchy Cours d'analyse de l'École royale polytechnique , 1821 .

[34]  M. White From a philosophical point of view , 2004 .

[35]  Nicolas Bourbaki,et al.  Elements of mathematics , 2004 .

[36]  Ian Stewart,et al.  From Here to Infinity , 1996 .

[37]  Vieri Benci,et al.  Alpha-theory: An elementary axiomatics for nonstandard analysis , 2003 .

[38]  A. Robinson Numbers and Models , Standard and Nonstandard , 2010 .

[39]  Solomon Feferman,et al.  Conceptions of the Continuum , 2009 .

[40]  Philip Ehrlich,et al.  The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .

[41]  A. Oestreich,et al.  Letter to the Editors , 2009, Skeletal Radiology.

[42]  Madeline Muntersbjorn,et al.  Representational Innovation and Mathematical Ontology , 2004, Synthese.

[43]  Mariano Hormigón Blánquez Cours d'analyse de l'école royale polytechnique , 2004 .

[44]  Gert Schubring,et al.  Conflicts between Generalization, Rigor and Intuition. Number Concepts Underlying the Development of Analysis in 17th-19th Century France and Germany , 2005 .

[45]  Carl B. Boyer,et al.  The Concepts of the Calculus , 1940 .

[46]  A. Cauchy Résumé des leçons données à l'École royale polytechnique, sur le calcul infinitésimal , 2009 .

[47]  Robert H. Anderson,et al.  A Source Book , 1995 .

[48]  Detlef Laugwitz Infinitely small quantities in Cauchy's textbooks , 1987 .

[49]  G. Hanna,et al.  Explanation and proof in mathematics : philosophical and educational perspectives , 2009 .

[50]  C. S. Pierce,et al.  The New Elements of Mathematics. Vol III Parts 1 and 2. Mathematical Miscellanea , 1982 .

[51]  S. Albeverio Nonstandard Methods in Stochastic Analysis and Mathematical Physics , 1986 .

[52]  J. Stillwell Yearning for the Impossible: The Surprising Truths of Mathematics , 2018 .

[53]  Heinrich Rust Operational Semantics for Timed Systems: A Non-standard Approach to Uniform Modeling of Timed and Hybrid Systems , 2005, Lecture Notes in Computer Science.

[54]  D. Tall Looking at graphs through infinitesimal microscopes, windows and telescopes , 1980, The Mathematical Gazette.

[55]  K. Barner Fermats «adæquare» – und kein Ende? , 2011 .

[56]  Ekkehard Kopp,et al.  On Cauchy's Notion of Infinitesimal , 1988, The British Journal for the Philosophy of Science.

[57]  P. Jourdain The Origin of Cauchy's Conceptions of a Definite Integral and of the Continuity of a Function , 1913, Isis.

[58]  F. B.,et al.  The Concepts of the Calculus , 1939, Nature.

[59]  Herbert Breger The mysteries of adaequare: A vindication of fermat , 1994 .

[60]  Mikhail G. Katz,et al.  Zooming in on infinitesimal 1–.9.. in a post-triumvirate era , 2010, 1003.1501.

[61]  J. Bell A primer of infinitesimal analysis , 1998 .

[62]  V. Benci,et al.  A purely algebraic characterization of the hyperreal numbers , 2005 .

[63]  Roger North,et al.  The Mathematical Career of Pierre de Fermat , 1974, The Mathematical Gazette.

[64]  D. Tall,et al.  THE TENSION BETWEEN INTUITIVE INFINITESIMALS AND FORMAL MATHEMATICAL ANALYSIS , 2011, 1110.5747.

[65]  Leonard Gillman,et al.  Rings of continuous functions , 1961 .

[66]  P. Zsombor-Murray,et al.  Elementary Mathematics from an Advanced Standpoint , 1940, Nature.

[67]  Lorenzo Magnani,et al.  Mathematics through Diagrams: Microscopes in Non-Standard and Smooth Analysis , 2007, Model-Based Reasoning in Science, Technology, and Medicine.

[68]  Michael S. Mahoney The mathematical career of Pierre de Fermat, 1601-1665 , 1996 .

[69]  Kajsa Bråting,et al.  A new look at E.G. Björling and the Cauchy sum theorem , 2007 .

[70]  Jerzy Loś,et al.  Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables D'algèbres , 1955 .

[71]  Walter Felscher Bolzano, Cauchy, Epsilon, Delta , 2000, Am. Math. Mon..

[72]  H. Jerome Keisler,et al.  The Hyperreal Line , 1994 .

[73]  C. Hartshorne,et al.  Collected Papers of Charles Sanders Peirce , 1935, Nature.

[74]  C. Allen,et al.  Stanford Encyclopedia of Philosophy , 2011 .

[75]  A. Robinson Non-standard analysis , 1966 .

[76]  Karin U. Katz,et al.  When is .999... less than 1? , 2010, The Mathematics Enthusiast.

[77]  H. Keisler Elementary Calculus: An Infinitesimal Approach , 1976 .

[78]  J. Gray Plato's Ghost: The Modernist Transformation of Mathematics , 2008 .

[79]  R. Ely Nonstandard Student Conceptions About Infinitesimals , 2010 .

[80]  Jeremy Gray,et al.  Number theory: An approach through history; from Hammurapi to Legendre , 1986 .