The Ordinal Recursive Complexity of Lossy Channel Systems

We show that reachability and termination for lossy channel systems is exactly at level Fomegaomega in the fast-growing hierarchy of recursive functions, the first level that dominates all multiply-recursive functions.

[1]  Slawomir Lasota,et al.  Alternating timed automata , 2005, TOCL.

[2]  Philippe Schnoebelen,et al.  Well-structured transition systems everywhere! , 2001, Theor. Comput. Sci..

[3]  Parosh Aziz Abdulla,et al.  Verification of Probabilistic Systems with Faulty Communication , 2003, FoSSaCS.

[4]  Parosh Aziz Abdulla,et al.  Monotonic and Downward Closed Games , 2008, J. Log. Comput..

[5]  Alain Finkel,et al.  Unreliable Channels are Easier to Verify Than Perfect Channels , 1996, Inf. Comput..

[6]  P. Schnoebelen,et al.  The ω-Regular Post Embedding Problem ⋆ , 2008 .

[7]  Parosh Aziz Abdulla,et al.  Verifying Programs with Unreliable Channels , 1996, Inf. Comput..

[8]  H. E. Rose Subrecursion: Functions and Hierarchies , 1984 .

[9]  Richard Mayr,et al.  Undecidable problems in unreliable computations , 2000, Theor. Comput. Sci..

[10]  Boris Konev,et al.  Temporal Logics over Transitive States , 2005, CADE.

[11]  Christel Baier,et al.  Verifying nondeterministic probabilistic channel systems against ω-regular linear-time properties , 2005, TOCL.

[12]  Kenneth McAloon,et al.  Petri Nets and Large Finite Sets , 1984, Theor. Comput. Sci..

[13]  Parosh Aziz Abdulla,et al.  Decidability and Complexity Results for Timed Automata via Channel Machines , 2005, ICALP.

[14]  Daniel Brand,et al.  On Communicating Finite-State Machines , 1983, JACM.

[15]  Philippe Schnoebelen,et al.  A General Approach to Comparing Infinite-State Systems with Their Finite-State Specifications , 2006, CONCUR.

[16]  Stanley S. Wainer,et al.  Chapter III - Hierarchies of Provably Recursive Functions , 1998 .

[17]  Frank Wolter,et al.  Non-primitive recursive decidability of products of modal logics with expanding domains , 2006, Ann. Pure Appl. Log..

[18]  Stéphane Demri,et al.  LTL with the Freeze Quantifier and Register Automata , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[19]  Alain Finkel,et al.  Decidability of the termination problem for completely specified protocols , 1994, Distributed Computing.

[20]  Dick H. J. Jongh,et al.  Well-partial orderings and hierarchies , 1977 .

[21]  S. S. Wainer,et al.  A classification of the ordinal recursive functions , 1970 .

[22]  N. Meyers,et al.  H = W. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Hélène Touzet Propriétés combinatoires pour la terminaison de systèmes de réécriture. (Combinatorial properties for termination in term rewriting theory) , 1997 .

[24]  Philippe Schnoebelen,et al.  Post Embedding Problem Is Not Primitive Recursive, with Applications to Channel Systems , 2007, FSTTCS.

[25]  Elias Tahhan-Bittar,et al.  Ordinal Recursive Bounds for Higman's Theorem , 1998, Theor. Comput. Sci..

[26]  Joël Ouaknine,et al.  Nets with Tokens which Carry Data , 2008, Fundam. Informaticae.

[27]  Philippe Schnoebelen,et al.  Verifying lossy channel systems has nonprimitive recursive complexity , 2002, Inf. Process. Lett..

[28]  Christel Baier,et al.  On Computing Fixpoints in Well-Structured Regular Model Checking, with Applications to Lossy Channel Systems , 2006, LPAR.