Underlying Principles and Recurring Ideas of Formal Grammars
暂无分享,去创建一个
[1] Sanguthevar Rajasekaran,et al. TAL Recognition in O(M(n»)) Time , 1998, J. Comput. Syst. Sci..
[2] Panos Rondogiannis,et al. Well-founded semantics for Boolean grammars , 2009, Inf. Comput..
[3] Pierre Boullier,et al. A Cubic Time Extension of Context-Free Grammars , 2000, Grammars.
[4] Artur Jez,et al. Computational completeness of equations over sets of natural numbers , 2014, Inf. Comput..
[5] Alexander Okhotin,et al. Decision problems for language equations , 2010, J. Comput. Syst. Sci..
[6] R. Nakanishi. Efficient Recognition Algorithms for Parallel Multiple Context-Free Languages and for Multiple Context-Free Languages , 1998 .
[7] Burchard von Braunmühl,et al. Input-Driven Languages are Recognized in log n Space , 1983, FCT.
[8] Philippe Flajolet,et al. Analytic Models and Ambiguity of Context-free Languages* , 2022 .
[9] Ryo Yoshinaka. Distributional learning of conjunctive grammars and contextual binary feature grammars , 2019, J. Comput. Syst. Sci..
[10] Alexander Okhotin,et al. Unresolved systems of language equations: Expressive power and decision problems , 2005, Theor. Comput. Sci..
[11] William F. Ogden,et al. A helpful result for proving inherent ambiguity , 1968, Mathematical systems theory.
[12] Alexander Okhotin,et al. Boolean Grammars and GSM Mappings , 2010, Int. J. Found. Comput. Sci..
[13] Richard P. Brent. A PARALLEL ALGORITHM FOR CONTEXT-FREE PARSING , 2003 .
[14] Stefan SOKOLOWSKI. A Method for Proving Programming Languages non Context-Free , 1978, Inf. Process. Lett..
[15] Moshe Y. Vardi. Global decision problems for relational databases , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).
[16] Seymour Ginsburg,et al. Bracketed Context-Free Languages , 1967, J. Comput. Syst. Sci..
[17] Maurice Nivat,et al. Le cylindre des langages linéaires , 2005, Mathematical systems theory.
[18] Carl Jesse Pollard,et al. Generalized phrase structure grammars, head grammars, and natural language , 1984 .
[19] Véronique Terrier. Some Computational Limits of Trellis Automata , 2017, AUTOMATA.
[20] David J. Weir,et al. The equivalence of four extensions of context-free grammars , 1994, Mathematical systems theory.
[21] Seymour Ginsburg,et al. Deterministic Context Free Languages , 1966, Inf. Control..
[22] Manfred Droste,et al. The Chomsky-SCHüTzenberger Theorem for Quantitative Context-Free Languages , 2012, Int. J. Found. Comput. Sci..
[23] Norbert Blum,et al. More on the Power of Chain Rules in Context-Free Grammars , 1983, Theor. Comput. Sci..
[24] Michal Chytil. Kins of Context-Free Languages , 1986, MFCS.
[25] Neil Immerman,et al. Relational Queries Computable in Polynomial Time , 1986, Inf. Control..
[26] Ryo Yoshinaka,et al. The Failure of the Strong Pumping Lemma for Multiple Context-Free Languages , 2014, Theory of Computing Systems.
[27] Michal Kunc. The Power of Commuting with Finite Sets of Words , 2006, Theory of Computing Systems.
[28] Alexander Okhotin,et al. Conjunctive and Boolean grammars: The true general case of the context-free grammars , 2013, Comput. Sci. Rev..
[29] Michael Kaminski,et al. LR(0) conjunctive grammars and deterministic synchronized alternating pushdown automata , 2016, J. Comput. Syst. Sci..
[30] Robert McNaughton,et al. Parenthesis Grammars , 1967, JACM.
[31] Wojciech Rytter. On the recognition of context-free languages , 1984, Symposium on Computation Theory.
[32] Alexander Okhotin,et al. Complexity of input-driven pushdown automata , 2014, SIGA.
[33] David J. Weir,et al. Characterizing Structural Descriptions Produced by Various Grammatical Formalisms , 1987, ACL.
[34] Véronique Terrier,et al. On Real Time One-Way Cellular Array , 1995, Theor. Comput. Sci..
[35] Seymour Ginsburg,et al. Position-Restricted Grammar Forms and Grammars , 1982, Theor. Comput. Sci..
[36] Alexander Okhotin,et al. Conjunctive Categorial Grammars , 2017, MOL.
[37] Oscar H. Ibarra,et al. Characterizations and Computational Complexity of Systolic Trellis Automata , 1984, Theor. Comput. Sci..
[38] Karl Winklmann,et al. An "Interchange Lemma" for Context-Free Languages , 1985, SIAM J. Comput..
[39] Sheila A. Greibach,et al. The Hardest Context-Free Language , 1973, SIAM J. Comput..
[40] Leslie G. Valiant,et al. General Context-Free Recognition in Less than Cubic Time , 1975, J. Comput. Syst. Sci..
[41] Alexander Okhotin. The Hardest Language for Conjunctive Grammars , 2016, CSR.
[42] Stepan Kuznetsov,et al. Conjunctive Grammars in Greibach Normal Form and the Lambek Calculus with Additive Connectives , 2013, FG.
[43] Ryo Yoshinaka,et al. Chomsky-Schützenberger-Type Characterization of Multiple Context-Free Languages , 2010, LATA.
[44] Arnaldo Moura,et al. A Generalization of Ogden's Lemma , 1982, JACM.
[45] Artur Jez. Conjunctive Grammars Can Generate Non-regular Unary Languages , 2007, Developments in Language Theory.
[46] Alexander Okhotin. Unambiguous Boolean grammars , 2007, Inf. Comput..
[47] Noam Chomsky,et al. The Algebraic Theory of Context-Free Languages* , 1963 .
[48] Alexander Okhotin,et al. Recursive descent parsing for Boolean grammars , 2007, Acta Informatica.
[49] Amaury Habrard,et al. Using Contextual Representations to Efficiently Learn Context-Free Languages , 2010, J. Mach. Learn. Res..
[50] Friedrich J. Urbanek. On Greibach Normal Form Construction , 1986, Theor. Comput. Sci..
[51] Alica Kelemenová,et al. Complexity of Normal Form Grammars , 1984, Theor. Comput. Sci..
[52] John Glauert,et al. The conflict-free reduction geometry , 2005 .
[53] Stefano Crespi-Reghizzi,et al. The Missing Case in Chomsky-Schützenberger Theorem , 2016, LATA.
[54] Sheila A. Greibach,et al. Jump PDA's and Hierarchies of Deterministic Context-Free Languages , 1974, SIAM J. Comput..
[55] Alexander Okhotin. Boolean grammars , 2004, Inf. Comput..
[56] Seymour Ginsburg,et al. Two Families of Languages Related to ALGOL , 1962, JACM.
[57] Michael Kaminski,et al. Conjunctive grammars and alternating pushdown automata , 2013, Acta Informatica.
[58] Artur Jez,et al. Conjunctive Grammars over a Unary Alphabet: Undecidability and Unbounded Growth , 2008, Theory of Computing Systems.
[59] Alexander Okhotin,et al. Non-erasing Variants of the Chomsky-Schützenberger Theorem , 2012, Developments in Language Theory.
[60] Pierre Ganty,et al. Parikhʼs theorem: A simple and direct automaton construction , 2010, Inf. Process. Lett..
[61] Michael Sipser,et al. Introduction to the Theory of Computation , 1996, SIGA.
[62] Stephen A. Cook,et al. Deterministic CFL's are accepted simultaneously in polynomial time and log squared space , 1979, STOC.
[63] David H. D. Warren,et al. Parsing as Deduction , 1983, ACL.
[64] Martin Kutrib,et al. On time computability of functions in one-way cellular automata , 1998, Acta Informatica.
[65] Alexander Okhotin,et al. Conjunctive Grammars , 2001, J. Autom. Lang. Comb..
[66] Joost Engelfriet. An Elementary Proof of Double Greibach Normal Form , 1992, Inf. Process. Lett..
[67] Tadao Kasami,et al. On Multiple Context-Free Grammars , 1991, Theor. Comput. Sci..
[68] Daniel J. Rosenkrantz,et al. Matrix Equations and Normal Forms for Context-Free Grammars , 1967, JACM.
[69] Véronique Terrier. Recognition of poly-slender context-free languages by trellis automata , 2017, Theor. Comput. Sci..
[70] Arto Salomaa,et al. Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.
[71] Alexander Okhotin,et al. An extension of context-free grammars with one-sided context specifications , 2014, Inf. Comput..
[72] Alexander Okhotin,et al. Two-sided context specifications in formal grammars , 2015, Theor. Comput. Sci..
[73] Alexander Okhotin,et al. Conjunctive grammars with restricted disjunction , 2010, Theor. Comput. Sci..
[74] Richard Edwin Stearns,et al. Memory bounds for recognition of context-free and context-sensitive languages , 1965, SWCT.
[75] Markus Holzer,et al. On the Complexities of Linear LL(1) and LR(1) Grammars , 1993, FCT.
[76] Seymour Ginsburg,et al. One-way stack automata , 1967, JACM.
[77] Robert W. Floyd,et al. Syntactic Analysis and Operator Precedence , 1963, JACM.
[78] Alexander Okhotin. Parsing by matrix multiplication generalized to Boolean grammars , 2014, Theor. Comput. Sci..
[79] Sheila A. Greibach,et al. A New Normal-Form Theorem for Context-Free Phrase Structure Grammars , 1965, JACM.
[80] Robert A. Kowalski,et al. Logic for problem solving , 1982, The computer science library : Artificial intelligence series.
[81] Ivan Hal Sudborough,et al. A Note on Tape-Bounded Complexity Classes and Linear Context-Free languages , 1975, JACM.
[82] R. Alur,et al. Adding nesting structure to words , 2006, JACM.
[83] Noam Chomsky,et al. Three models for the description of language , 1956, IRE Trans. Inf. Theory.
[84] Makoto Kanazawa. The Pumping Lemma for Well-Nested Multiple Context-Free Languages , 2009, Developments in Language Theory.
[85] Martin Lange. Alternating Context-Free Languages and Linear Time mu-Calculus with Sequential Composition , 2002, EXPRESS.
[86] William C. Rounds,et al. LFP A Logic for Linguistic Descriptions and an Analysis of its Complexity , 1988, Comput. Linguistics.
[87] Jean Berstel,et al. Balanced Grammars and Their Languages , 2002, Formal and Natural Computing.
[88] Alexander Okhotin,et al. On the equivalence of linear conjunctive grammars and trellis automata , 2004, RAIRO Theor. Informatics Appl..