Underlying Principles and Recurring Ideas of Formal Grammars

The paper investigates some of the fundamental ideas of the context-free grammar theory, as they are applied to several extensions and subclasses of context-free grammars. For these grammar families, including multi-component grammars, tree-adjoining grammars, conjunctive grammars and Boolean grammars, a summary of the following properties is given: parse trees, language equations, closure under several operations, normal forms, parsing algorithms, representation in the FO(LFP) logic, representations by automata and by categorial grammars, homomorphic characterizations, hardest language theorems, pumping lemmata and other limitations, computational complexity.

[1]  Sanguthevar Rajasekaran,et al.  TAL Recognition in O(M(n»)) Time , 1998, J. Comput. Syst. Sci..

[2]  Panos Rondogiannis,et al.  Well-founded semantics for Boolean grammars , 2009, Inf. Comput..

[3]  Pierre Boullier,et al.  A Cubic Time Extension of Context-Free Grammars , 2000, Grammars.

[4]  Artur Jez,et al.  Computational completeness of equations over sets of natural numbers , 2014, Inf. Comput..

[5]  Alexander Okhotin,et al.  Decision problems for language equations , 2010, J. Comput. Syst. Sci..

[6]  R. Nakanishi Efficient Recognition Algorithms for Parallel Multiple Context-Free Languages and for Multiple Context-Free Languages , 1998 .

[7]  Burchard von Braunmühl,et al.  Input-Driven Languages are Recognized in log n Space , 1983, FCT.

[8]  Philippe Flajolet,et al.  Analytic Models and Ambiguity of Context-free Languages* , 2022 .

[9]  Ryo Yoshinaka Distributional learning of conjunctive grammars and contextual binary feature grammars , 2019, J. Comput. Syst. Sci..

[10]  Alexander Okhotin,et al.  Unresolved systems of language equations: Expressive power and decision problems , 2005, Theor. Comput. Sci..

[11]  William F. Ogden,et al.  A helpful result for proving inherent ambiguity , 1968, Mathematical systems theory.

[12]  Alexander Okhotin,et al.  Boolean Grammars and GSM Mappings , 2010, Int. J. Found. Comput. Sci..

[13]  Richard P. Brent A PARALLEL ALGORITHM FOR CONTEXT-FREE PARSING , 2003 .

[14]  Stefan SOKOLOWSKI A Method for Proving Programming Languages non Context-Free , 1978, Inf. Process. Lett..

[15]  Moshe Y. Vardi Global decision problems for relational databases , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[16]  Seymour Ginsburg,et al.  Bracketed Context-Free Languages , 1967, J. Comput. Syst. Sci..

[17]  Maurice Nivat,et al.  Le cylindre des langages linéaires , 2005, Mathematical systems theory.

[18]  Carl Jesse Pollard,et al.  Generalized phrase structure grammars, head grammars, and natural language , 1984 .

[19]  Véronique Terrier Some Computational Limits of Trellis Automata , 2017, AUTOMATA.

[20]  David J. Weir,et al.  The equivalence of four extensions of context-free grammars , 1994, Mathematical systems theory.

[21]  Seymour Ginsburg,et al.  Deterministic Context Free Languages , 1966, Inf. Control..

[22]  Manfred Droste,et al.  The Chomsky-SCHüTzenberger Theorem for Quantitative Context-Free Languages , 2012, Int. J. Found. Comput. Sci..

[23]  Norbert Blum,et al.  More on the Power of Chain Rules in Context-Free Grammars , 1983, Theor. Comput. Sci..

[24]  Michal Chytil Kins of Context-Free Languages , 1986, MFCS.

[25]  Neil Immerman,et al.  Relational Queries Computable in Polynomial Time , 1986, Inf. Control..

[26]  Ryo Yoshinaka,et al.  The Failure of the Strong Pumping Lemma for Multiple Context-Free Languages , 2014, Theory of Computing Systems.

[27]  Michal Kunc The Power of Commuting with Finite Sets of Words , 2006, Theory of Computing Systems.

[28]  Alexander Okhotin,et al.  Conjunctive and Boolean grammars: The true general case of the context-free grammars , 2013, Comput. Sci. Rev..

[29]  Michael Kaminski,et al.  LR(0) conjunctive grammars and deterministic synchronized alternating pushdown automata , 2016, J. Comput. Syst. Sci..

[30]  Robert McNaughton,et al.  Parenthesis Grammars , 1967, JACM.

[31]  Wojciech Rytter On the recognition of context-free languages , 1984, Symposium on Computation Theory.

[32]  Alexander Okhotin,et al.  Complexity of input-driven pushdown automata , 2014, SIGA.

[33]  David J. Weir,et al.  Characterizing Structural Descriptions Produced by Various Grammatical Formalisms , 1987, ACL.

[34]  Véronique Terrier,et al.  On Real Time One-Way Cellular Array , 1995, Theor. Comput. Sci..

[35]  Seymour Ginsburg,et al.  Position-Restricted Grammar Forms and Grammars , 1982, Theor. Comput. Sci..

[36]  Alexander Okhotin,et al.  Conjunctive Categorial Grammars , 2017, MOL.

[37]  Oscar H. Ibarra,et al.  Characterizations and Computational Complexity of Systolic Trellis Automata , 1984, Theor. Comput. Sci..

[38]  Karl Winklmann,et al.  An "Interchange Lemma" for Context-Free Languages , 1985, SIAM J. Comput..

[39]  Sheila A. Greibach,et al.  The Hardest Context-Free Language , 1973, SIAM J. Comput..

[40]  Leslie G. Valiant,et al.  General Context-Free Recognition in Less than Cubic Time , 1975, J. Comput. Syst. Sci..

[41]  Alexander Okhotin The Hardest Language for Conjunctive Grammars , 2016, CSR.

[42]  Stepan Kuznetsov,et al.  Conjunctive Grammars in Greibach Normal Form and the Lambek Calculus with Additive Connectives , 2013, FG.

[43]  Ryo Yoshinaka,et al.  Chomsky-Schützenberger-Type Characterization of Multiple Context-Free Languages , 2010, LATA.

[44]  Arnaldo Moura,et al.  A Generalization of Ogden's Lemma , 1982, JACM.

[45]  Artur Jez Conjunctive Grammars Can Generate Non-regular Unary Languages , 2007, Developments in Language Theory.

[46]  Alexander Okhotin Unambiguous Boolean grammars , 2007, Inf. Comput..

[47]  Noam Chomsky,et al.  The Algebraic Theory of Context-Free Languages* , 1963 .

[48]  Alexander Okhotin,et al.  Recursive descent parsing for Boolean grammars , 2007, Acta Informatica.

[49]  Amaury Habrard,et al.  Using Contextual Representations to Efficiently Learn Context-Free Languages , 2010, J. Mach. Learn. Res..

[50]  Friedrich J. Urbanek On Greibach Normal Form Construction , 1986, Theor. Comput. Sci..

[51]  Alica Kelemenová,et al.  Complexity of Normal Form Grammars , 1984, Theor. Comput. Sci..

[52]  John Glauert,et al.  The conflict-free reduction geometry , 2005 .

[53]  Stefano Crespi-Reghizzi,et al.  The Missing Case in Chomsky-Schützenberger Theorem , 2016, LATA.

[54]  Sheila A. Greibach,et al.  Jump PDA's and Hierarchies of Deterministic Context-Free Languages , 1974, SIAM J. Comput..

[55]  Alexander Okhotin Boolean grammars , 2004, Inf. Comput..

[56]  Seymour Ginsburg,et al.  Two Families of Languages Related to ALGOL , 1962, JACM.

[57]  Michael Kaminski,et al.  Conjunctive grammars and alternating pushdown automata , 2013, Acta Informatica.

[58]  Artur Jez,et al.  Conjunctive Grammars over a Unary Alphabet: Undecidability and Unbounded Growth , 2008, Theory of Computing Systems.

[59]  Alexander Okhotin,et al.  Non-erasing Variants of the Chomsky-Schützenberger Theorem , 2012, Developments in Language Theory.

[60]  Pierre Ganty,et al.  Parikhʼs theorem: A simple and direct automaton construction , 2010, Inf. Process. Lett..

[61]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[62]  Stephen A. Cook,et al.  Deterministic CFL's are accepted simultaneously in polynomial time and log squared space , 1979, STOC.

[63]  David H. D. Warren,et al.  Parsing as Deduction , 1983, ACL.

[64]  Martin Kutrib,et al.  On time computability of functions in one-way cellular automata , 1998, Acta Informatica.

[65]  Alexander Okhotin,et al.  Conjunctive Grammars , 2001, J. Autom. Lang. Comb..

[66]  Joost Engelfriet An Elementary Proof of Double Greibach Normal Form , 1992, Inf. Process. Lett..

[67]  Tadao Kasami,et al.  On Multiple Context-Free Grammars , 1991, Theor. Comput. Sci..

[68]  Daniel J. Rosenkrantz,et al.  Matrix Equations and Normal Forms for Context-Free Grammars , 1967, JACM.

[69]  Véronique Terrier Recognition of poly-slender context-free languages by trellis automata , 2017, Theor. Comput. Sci..

[70]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[71]  Alexander Okhotin,et al.  An extension of context-free grammars with one-sided context specifications , 2014, Inf. Comput..

[72]  Alexander Okhotin,et al.  Two-sided context specifications in formal grammars , 2015, Theor. Comput. Sci..

[73]  Alexander Okhotin,et al.  Conjunctive grammars with restricted disjunction , 2010, Theor. Comput. Sci..

[74]  Richard Edwin Stearns,et al.  Memory bounds for recognition of context-free and context-sensitive languages , 1965, SWCT.

[75]  Markus Holzer,et al.  On the Complexities of Linear LL(1) and LR(1) Grammars , 1993, FCT.

[76]  Seymour Ginsburg,et al.  One-way stack automata , 1967, JACM.

[77]  Robert W. Floyd,et al.  Syntactic Analysis and Operator Precedence , 1963, JACM.

[78]  Alexander Okhotin Parsing by matrix multiplication generalized to Boolean grammars , 2014, Theor. Comput. Sci..

[79]  Sheila A. Greibach,et al.  A New Normal-Form Theorem for Context-Free Phrase Structure Grammars , 1965, JACM.

[80]  Robert A. Kowalski,et al.  Logic for problem solving , 1982, The computer science library : Artificial intelligence series.

[81]  Ivan Hal Sudborough,et al.  A Note on Tape-Bounded Complexity Classes and Linear Context-Free languages , 1975, JACM.

[82]  R. Alur,et al.  Adding nesting structure to words , 2006, JACM.

[83]  Noam Chomsky,et al.  Three models for the description of language , 1956, IRE Trans. Inf. Theory.

[84]  Makoto Kanazawa The Pumping Lemma for Well-Nested Multiple Context-Free Languages , 2009, Developments in Language Theory.

[85]  Martin Lange Alternating Context-Free Languages and Linear Time mu-Calculus with Sequential Composition , 2002, EXPRESS.

[86]  William C. Rounds,et al.  LFP A Logic for Linguistic Descriptions and an Analysis of its Complexity , 1988, Comput. Linguistics.

[87]  Jean Berstel,et al.  Balanced Grammars and Their Languages , 2002, Formal and Natural Computing.

[88]  Alexander Okhotin,et al.  On the equivalence of linear conjunctive grammars and trellis automata , 2004, RAIRO Theor. Informatics Appl..