VHCF response of as-built SLM AlSi10Mg specimens with large loaded volume

[1]  Stanzl‐Tschegg Fracture mechanisms and fracture mechanics at ultrasonic frequencies , 1999 .

[2]  H. Höppel,et al.  A finite element modelling study of strain localization in the vicinity of near-surface cavities as a cause of subsurface fatigue crack initiation , 2002 .

[3]  J. Jones,et al.  Fatigue behaviour of SiCp-reinforced aluminium composites in the very high cycle regime using ultrasonic fatigue , 2006 .

[4]  Claude Bathias,et al.  Cumulative fatigue damage in low cycle fatigue and gigacycle fatigue for low carbon–manganese steel , 2011 .

[5]  Y. Furuya Notable size effects on very high cycle fatigue properties of high-strength steel , 2011 .

[6]  SVILUPPO DI UNA MACCHINA A ULTRASUONI PER PROVE DI FATICA GIGACICLICA , 2012 .

[7]  Davide Salvatore Paolino,et al.  A unified statistical model for S-N fatigue curves: probabilistic definition , 2013 .

[8]  G. Chiandussi,et al.  Comparison between dog-bone and Gaussian specimens for size effect evaluation in gigacycle fatigue , 2013 .

[9]  Chang-Min Suh,et al.  Very high cycle fatigue characteristics of a chrome‐molybdenum steel treated by ultrasonic nanocrystal surface modification technique , 2013 .

[10]  I. Ashcroft,et al.  Reducing porosity in AlSi10Mg parts processed by selective laser melting , 2014 .

[11]  S. Stanzl-Tschegg,et al.  Variable amplitude loading of spray‐formed hypereutectic aluminium silicon alloy DISPAL® S232 in the VHCF regime , 2014 .

[12]  G. Chiandussi,et al.  On specimen design for size effect evaluation in ultrasonic gigacycle fatigue testing , 2014 .

[13]  M. Sander,et al.  Influence of mean stress and variable amplitude loading on the fatigue behaviour of a high-strength steel in VHCF regime , 2014 .

[14]  Xiao Rong Huang,et al.  Study of Air Temperature Correction for Optical Path Based on Large-Scale Laser Comparator , 2014 .

[15]  Bert Pennings,et al.  VHCF properties of nitrided 18Ni maraging steel thin sheets with different Co and Ti content , 2015 .

[16]  E. O. Olakanmi,et al.  A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties , 2015 .

[17]  F. Walther,et al.  Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting , 2015 .

[18]  J.-P. Kruth,et al.  Processing AlSi10Mg by selective laser melting: parameter optimisation and material characterisation , 2015 .

[19]  Wei Wang,et al.  Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development , 2015, Materials & Design (1980-2015).

[20]  G. Chiandussi,et al.  VHCF Response of AISI H13 Steel: assessment of Size Effects through Gaussian Specimens , 2015 .

[21]  A. Nikitin,et al.  Crack initiation in VHCF regime on forged titanium alloy under tensile and torsion loading modes , 2016 .

[22]  G. Chiandussi,et al.  S-N curves in the very-high-cycle fatigue regime: Statistical modeling based on the hydrogen embrittlement consideration , 2016 .

[23]  Xinhua Wu,et al.  The influence of processing parameters on aluminium alloy A357 manufactured by Selective Laser Melting , 2016 .

[25]  T. Mower,et al.  Mechanical behavior of additive manufactured, powder-bed laser-fused materials , 2016 .

[26]  Ian A. Ashcroft,et al.  Improving the fatigue behaviour of a selectively laser melted aluminium alloy: Influence of heat treatment and surface quality , 2016 .

[27]  A. Tridello VHCF response of Gaussian specimens made of high-strength steels:comparison between unrefined and refined AISI H13 , 2017 .

[28]  C. Biffi,et al.  Microstructure and preliminary fatigue analysis on AlSi10Mg samples manufactured by SLM , 2017 .

[29]  T. Uchida,et al.  Effects of Defects, Surface Roughness and HIP on Fatigue Strength of Ti-6Al-4V manufactured by Additive Manufacturing , 2017 .

[30]  Ultrasonic VHCF tests on AISI H13 steel with two different inclusion content: assessment of size effects with Gaussian specimens , 2017 .

[31]  F. Walther,et al.  Very high cycle fatigue and fatigue crack propagation behavior of selective laser melted AlSi12 alloy , 2017 .

[32]  S. Beretta,et al.  A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes , 2017 .

[33]  N. Uzan,et al.  Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting (AM-SLM) , 2017 .

[34]  G. Chiandussi,et al.  Effect of electroslag remelting on the VHCF response of an AISI H13 steel , 2017 .

[35]  Eleonora Atzeni,et al.  Experimental Analysis of Residual Stresses on AlSi10Mg Parts Produced by Means of Selective Laser Melting (SLM) , 2017 .

[36]  Carlo Alberto Biffi,et al.  Low temperature annealing dedicated to AlSi10Mg selective laser melting products , 2017 .