Automatic Diagnosis with 12-Lead ECG Signals

Electrocardiogram (ECG) is strong evidence in the diagnosis of a wide range of heart-related diseases, and it is becoming increasingly important in the medical field recently. However, inferencing diseases with ECG signals is both time-consuming and error-prone even for licensed physicians, which arises the urgency of developing a fast and accurate automatic diagnosis algorithm. In this paper, we explore both deep learning models and well-designed feature engineering from ECG waveform. By combining the two methods, we propose an automatic diagnosis framework that can extract meaningful features both with and without human interventions. Experimental results on the ECG competition demonstrate that our framework can reach accurate results on heart-related diseases diagnosis.

[1]  Lukás Burget,et al.  Recurrent neural network based language model , 2010, INTERSPEECH.

[2]  U. Rajendra Acharya,et al.  A deep convolutional neural network model to classify heartbeats , 2017, Comput. Biol. Medicine.

[3]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[4]  Dawei Jin,et al.  Arrhythmia classification based on wavelet transformation and random forests , 2017, Multimedia Tools and Applications.

[5]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[6]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[7]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[8]  Naif Alajlan,et al.  A wavelet optimization approach for ECG signal classification , 2012, Biomed. Signal Process. Control..

[9]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[10]  Lukás Burget,et al.  Extensions of recurrent neural network language model , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[11]  Masoumeh Haghpanahi,et al.  Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network , 2019, Nature Medicine.

[12]  Lovekesh Vig,et al.  Anomaly detection in ECG time signals via deep long short-term memory networks , 2015, 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA).