Magnetic signatures of Kelvin‐Helmholtz vortices on Saturn's magnetopause: Global survey

[1] Saturn's rapid rotation combined with relatively weak magnetic fields in the outer magnetosphere and sheath lead to conditions that are favorable for the Kelvin-Helmholtz (KH) instability. A Kelvin-Helmholtz unstable magnetopause boundary has important consequences for Saturn's interaction with the solar wind due to mass, momentum, and energy transport that can occur at the magnetopause boundary. Previous attempts to identify vortices have been hampered by limited plasma data to unambiguously reveal vortical flow. The magnetic field data, on the other hand, may be able to identify the KH instability due to intense magnetic fluctuations that are associated with KH vortices. We have conducted two-dimensional hybrid code simulations of Saturn's magnetopause boundary to illustrate the expected magnetic field signatures of KH. Specifically, our simulations show strong field-aligned current sheet filaments or strong bipolar fluctuations of the in-plane magnetic field components, bounding the KH vortices. A global search for these characteristic magnetic field signatures near the magnetopause boundary was made of the Cassini mission data from 2004 to 2009. We find that most of the potential KH activity is found on the dusk flank, contrary to expectations. We suggest that KH growth is supported in the prenoon and subsolar regions and that these vortices are transported through coupling to the rotating planet, past noon and tailward on the dusk flank. In addition, we find many instances in the subsolar magnetosphere of possible plasmoid formation (Bz northward) in conjunction with these intense magnetic field fluctuations.

[1]  Barry H. Mauk,et al.  Fundamental Plasma Processes in Saturn's Magnetosphere , 2009 .

[2]  F. Bagenal,et al.  The roles of charge exchange and dissociation in spreading Saturn's neutral clouds , 2012, 1204.0979.

[3]  F. Mozer,et al.  Scaling the energy conversion rate from magnetic field reconnection to different bodies , 2010, 1008.2454.

[4]  R. Walker,et al.  Vortex‐associated reconnection for northward IMF in the Kronian magnetosphere , 2007 .

[5]  R. Wilson,et al.  Kelvin-Helmholtz instability at Saturn's magnetopause: Cassini ion data analysis , 2012 .

[6]  P. Delamere,et al.  A three‐dimensional hybrid code simulation of the December 1984 solar wind AMPTE release , 1999 .

[7]  David J. Southwood,et al.  A new perspective concerning the influence of the solar wind on the Jovian magnetosphere , 2001 .

[8]  R. Walker,et al.  A simulation study of Kelvin‐Helmholtz waves at Saturn's magnetopause , 2011 .

[9]  M. Kivelson,et al.  Cassini observations of a Kelvin-Helmholtz vortex in Saturn's outer magnetosphere , 2010 .

[10]  M. Dougherty,et al.  Saturn's low‐latitude boundary layer: 1. Properties and variability , 2011 .

[11]  A. Otto,et al.  Kelvin Helmholtz Instability at the Equatorial Magnetotail Boundary: Mhd Simulation and Comparison with Geotail Observations , 2013 .

[12]  F. Bagenal,et al.  Flow of mass and energy in the magnetospheres of Jupiter and Saturn , 2011 .

[13]  T. Nakamura,et al.  Kinetic effects on the Kelvin-Helmholtz instability in ion-to-magnetohydrodynamic scale transverse velocity shear layers: Particle simulations. , 2010, Physics of plasmas.

[14]  D. Mccomas,et al.  Jupiter: A fundamentally different magnetospheric interaction with the solar wind , 2007 .

[15]  C. O. Hines,et al.  A UNIFYING THEORY OF HIGH-LATITUDE GEOPHYSICAL PHENOMENA AND GEOMAGNETIC STORMS , 1961 .

[16]  Kanako Seki,et al.  Formation of a broad plasma turbulent layer by forward and inverse energy cascades of the Kelvin–Helmholtz instability , 2010 .

[17]  J. Johnson,et al.  Kinetic Alfvén waves and plasma transport at the magnetopause , 1997 .

[18]  Nicholas Achilleos,et al.  Surface waves on Saturn's magnetopause , 2012 .

[19]  S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability , 1961 .

[20]  K. Nykyri,et al.  Plasma transport at the magnetospheric boundary due to reconnection in Kelvin‐Helmholtz vortices , 2001 .

[21]  S. Solomon,et al.  MESSENGER orbital observations of large‐amplitude Kelvin‐Helmholtz waves at Mercury's magnetopause , 2012 .

[22]  Daniel W. Swift,et al.  Use of a hybrid code to model the Earth's magnetosphere , 1995 .

[23]  P. Zarka,et al.  The Dynamics of Saturn's Magnetosphere , 2009 .

[24]  V. Vasyliūnas,et al.  Plasma distribution and flow , 1983 .

[25]  F. Bagenal,et al.  Solar wind interaction with Jupiter's magnetosphere , 2009 .

[26]  S. M. Krimigis,et al.  The importance of plasma β conditions for magnetic reconnection at Saturn's magnetopause , 2012 .

[27]  Michelle F. Thomsen,et al.  Evidence for reconnection at Saturn's magnetopause , 2008 .

[28]  Denis Grodent,et al.  Small-scale structures in Saturn's ultraviolet aurora , 2011 .

[29]  D. Winske,et al.  Kinetic simulation of the Kelvin‐Helmholtz instability at the Venus ionopause , 1991 .

[30]  Robert L. Tokar,et al.  Cassini plasma spectrometer thermal ion measurements in Saturn's inner magnetosphere , 2008 .

[31]  R E Johnson,et al.  The Interaction of the Atmosphere of Enceladus with Saturn's Plasma , 2006, Science.

[32]  M. Kivelson,et al.  Outer magnetospheric structure: Jupiter and Saturn compared , 2011 .

[33]  Robert L. Tokar,et al.  Plasmoids in Saturn's magnetotail , 2008 .

[34]  Peter A. Delamere,et al.  Hybrid code simulations of the solar wind interaction with Pluto , 2008 .

[35]  F. Bagenal,et al.  Conditions at the expanded Jovian magnetopause and implications for the solar wind interaction , 2012 .

[36]  S. Imber,et al.  Comment on “Jupiter: A fundamentally different magnetospheric interaction with the solar wind” by D. J. McComas and F. Bagenal , 2008 .

[37]  M. Fujimoto,et al.  Evolution of an MHD‐scale Kelvin‐Helmholtz vortex accompanied by magnetic reconnection: Two‐dimensional particle simulations , 2010 .

[38]  R. Wilson,et al.  Kelvin‐Helmholtz instability at Saturn's magnetopause: Hybrid simulations , 2011 .

[39]  K.-H. Glassmeier,et al.  The Cassini Magnetic Field Investigation , 2004 .

[40]  D. Mccomas,et al.  Reply to comment by S. W. H. Cowley et al. on “Jupiter: A fundamentally different magnetospheric interaction with the solar wind” , 2008 .

[41]  J. Huba,et al.  The Kelvin‐Helmholtz instability: Finite Larmor radius magnetohydrodynamics , 1996 .

[42]  D. Winske,et al.  Kinetic simulations of the Kelvin-Helmholtz instability at the magnetopause , 1993 .

[43]  J. Richardson,et al.  Evolution of mirror structures in the magnetosheath of Saturn from the bow shock to the magnetopause , 1998 .

[44]  Robert L. Tokar,et al.  Properties of the thermal ion plasma near Rhea as measured by the Cassini plasma spectrometer , 2009 .

[45]  Robert L. Tokar,et al.  Cassini observations of the thermal plasma in the vicinity of Saturn's main rings and the F and G rings , 2005 .

[46]  Zuyin Pu,et al.  Kelvin:Helmholtz Instability at the magnetopause: Solution for compressible plasmas , 1983 .

[47]  Daniel W. Swift,et al.  Use of a Hybrid Code for Global-Scale Plasma Simulation , 1996 .

[48]  Philippe Zarka,et al.  Source location of Saturn's kilometric radiation: The Kelvin-Helmholtz instability hypothesis , 1995 .

[49]  Christopher T. Russell,et al.  Reconnection at the magnetopause of Saturn: Perspective from FTE occurrence and magnetosphere size , 2012 .

[50]  N. Achilleos,et al.  Surface waves on Saturn's dawn flank magnetopause driven by the Kelvin-Helmholtz instability , 2009 .

[51]  R E Johnson,et al.  Composition and Dynamics of Plasma in Saturn's Magnetosphere , 2005, Science.

[52]  F. Bagenal,et al.  Conditions at the magnetopause of Saturn and implications for the solar wind interaction , 2013 .

[53]  A. Miura,et al.  Nonlocal stability analysis of the MHD Kelvin-Helmholtz instability in a compressible plasma. [solar wind-magnetosphere interaction] , 1982 .

[54]  R. K. Marcus,et al.  Fundamental Plasma Processes , 1993 .

[55]  M. Grande,et al.  Cassini Plasma Spectrometer Investigation , 2004 .

[56]  S. Krimigis,et al.  A new form of Saturn's magnetopause using a dynamic pressure balance model, based on in situ, multi-instrument Cassini measurements , 2010 .

[57]  R. Walker,et al.  Magnetospheric convection at Saturn as a function of IMF BZ , 2007 .

[58]  Philippe Zarka,et al.  Response of Jupiter's and Saturn's auroral activity to the solar wind , 2009 .

[59]  C. Russell,et al.  Geomagnetic activity and the beta dependence of the dayside reconnection rate , 1994 .

[60]  J. Steinberg,et al.  Geotail observations of the Kelvin‐Helmholtz instability at the equatorial magnetotail boundary for parallel northward fields , 2000 .

[61]  P. Song,et al.  Signatures of mode conversion and kinetic Alfvén waves at the magnetopause , 2001 .

[62]  C. Goertz Detached plasma in Saturn's front side magnetosphere , 1983 .

[63]  Lou‐Chuang Lee,et al.  Kelvin-Helmholtz Instability in the magnetopause-boundary layer region , 1981 .

[64]  Emma J. Bunce,et al.  Origin of Saturn's aurora: Simultaneous observations by Cassini and the Hubble Space Telescope , 2008 .

[65]  Douglas S. Harned,et al.  Quasineutral hybrid simulation of macroscopic plasma phenomena , 1982 .

[66]  C. Russell,et al.  Strong rapid dipolarizations in Saturn's magnetotail: In situ evidence of reconnection , 2007 .

[67]  Michelle F. Thomsen,et al.  Saturn's Magnetospheric Configuration , 2009 .

[68]  Tomoki Kimura,et al.  Cassini observations of ion and electron beams at Saturn and their relationship to infrared auroral arcs , 2012 .

[69]  K. Nykyri,et al.  Influence of the Hall Term on KH Instability and Reconnection Inside KH Vortices , 2004 .

[70]  V. Angelopoulos,et al.  Magnetic island formation between large‐scale flow vortices at an undulating postnoon magnetopause for northward interplanetary magnetic field , 2009 .