Augmenting the usability of parallel coordinate plot: The polyline glyphs

Polyline glyphs are minimized thumbnails of polylines from parallel coordinates. Since such glyphs may augment the usability of parallel coordinates, the authors investigate whether there are benefits to be derived from using polyline glyphs that are dynamically linked to parallel coordinates as opposed to the use of the latter visualization technique alone. They also identify user tasks that can be effectively solved if parallel coordinates dynamically linked to polyline glyphs are used. This study adds to the body of previous work a discussion on the features of the polyline glyphs that facilitate the exploration and understanding of multivariate data. Moreover, the authors conduct an empirical study in which parallel coordinates dynamically linked to polyline glyphs are used to solve four tasks. The main finding is that polyline glyphs can facilitate a better insight into the similarities between the multivariate signatures of data items and information acquisition if visual clutter hinders the use of parallel coordinates. The study also reveals that if visual clutter does not occur in parallel coordinates and the polylines from the latter can be differentiated, individuals tend not to use polyline glyphs to study multivariate signatures.

[1]  Richard Weinberg Envisioning information , 1991 .

[2]  Edward R. Tufte,et al.  Envisioning Information , 1990 .

[3]  Anthony C. Robinson,et al.  The geoviz toolkit: using component-oriented coordination methods for geographic visualization and analysis , 2011, Int. J. Geogr. Inf. Sci..

[4]  Tomasz Opach,et al.  Cartographic Visualization of Vulnerability to Natural Hazards , 2013, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[5]  Robert M. Edsall,et al.  Design and Usability of an Enhanced Geographic Information System for Exploration of Multivariate Health Statistics , 2003, The Professional Geographer.

[6]  M. Charlton,et al.  Quantitative geography : perspectives on spatial data analysis by , 2001 .

[7]  W C Wilson,et al.  Activity Pattern Analysis by Means of Sequence-Alignment Methods , 1998 .

[8]  Waqas Ahmed Malik,et al.  Interactive Glyph Graphics of Multivariate Data in Psychometrics , 2011 .

[9]  Ho Van Quan,et al.  A web-enabled visualization toolkit for geovisual analytics , 2012, Inf. Vis..

[10]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[11]  Timo Ropinski,et al.  Survey of glyph-based visualization techniques for spatial multivariate medical data , 2011, Comput. Graph..

[12]  Jacques Bertin,et al.  Semiologie graphique : les diagrammes les réseaux, les cartes , 1969 .

[13]  Tomasz Opach,et al.  Three core activities toward a relevant integrated vulnerability assessment: validate, visualize, and negotiate , 2015 .

[14]  Matthew O. Ward,et al.  A Taxonomy of Glyph Placement Strategies for Multidimensional Data Visualization , 2002, Inf. Vis..

[15]  Daniel Weiskopf,et al.  State of the Art of Parallel Coordinates , 2013, Eurographics.

[16]  Jason Dykes,et al.  Attribute Signatures: Dynamic Visual Summaries for Analyzing Multivariate Geographical Data , 2014, IEEE Transactions on Visualization and Computer Graphics.

[17]  Erwin Schmid,et al.  The participation of agricultural stakeholders in assessing regional vulnerability of cropland to soil water erosion in Austria , 2014, Regional Environmental Change.

[18]  Min Chen,et al.  Glyph-based Visualization: Foundations, Design Guidelines, Techniques and Applications , 2013, Eurographics.

[19]  Panos Vassiliadis,et al.  Similarity measures for multidimensional data , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[20]  Min Chen,et al.  Glyph sorting: Interactive visualization for multi-dimensional data , 2013, Inf. Vis..

[21]  Danny Dorling,et al.  The Visualization of Local Urban Change across Britain , 1995 .

[22]  J. Thompson,et al.  Multiple sequence alignment with Clustal X. , 1998, Trends in biochemical sciences.

[23]  Phipps Arabie,et al.  Was euclid an unnecessarily sophisticated psychologist? , 1991 .

[24]  Robert M. Edsall The parallel coordinate plot in action: design and use for geographic visualization , 2003, Comput. Stat. Data Anal..

[25]  Herman Chernoff,et al.  The Use of Faces to Represent Points in k- Dimensional Space Graphically , 1973 .

[26]  Gennady Andrienko,et al.  Testing the Usability of Interactive Maps in CommonGIS , 2002 .

[27]  E. Tufte Beautiful Evidence , 2006 .

[28]  Simon Urbanek,et al.  Interactive graphics for Data Analysis - Principles and Examples , 2008, Computer science and data analysis series.

[29]  Jin Chen,et al.  Combining Usability Techniques to Design Geovisualization Tools for Epidemiology , 2005, Cartography and geographic information science.

[30]  Matthew O. Ward,et al.  Multivariate Data Glyphs: Principles and Practice , 2008 .

[31]  Alan J. Dix,et al.  A Taxonomy of Clutter Reduction for Information Visualisation , 2007, IEEE Transactions on Visualization and Computer Graphics.

[32]  Tomasz Opach,et al.  Assessing agricultural vulnerability to climate change in the Nordic countries – an interactive geovisualization approach , 2017 .

[33]  Mark Gahegan,et al.  GeoVISTA studio: a codeless visual programming environment for geoscientific data analysis and visualization , 2002 .

[34]  Piotr Jankowski,et al.  Building Spatial Decision Support Tools for Individuals and Groups , 2003, J. Decis. Syst..

[35]  Rui Li,et al.  Colour-Enhanced Star Plot Glyphs: Can Salient Shape Characteristics Be Overcome? , 2009, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[36]  Terry A. Slocum Thematic Cartography and Geographic Visualization , 2004 .

[37]  F. Gregory Ashby,et al.  Similarity measures , 2007, Scholarpedia.