On the Form of Subobjects in Semi-Abelian and Regular Protomodular Categories

Let Gls denote the category of (possibly large) ordered sets with Galois connections as morphisms between ordered sets. The aim of the present paper is to characterize semi-abelian and regular protomodular categories among all regular categories ℂ, via the form of subobjects of ℂ, i.e. the functor ℂ → Gls which assigns to each object X in ℂ the ordered set Sub(X) of subobjects of X, and carries a morphism f : X → Y to the induced Galois connection Sub(X) → Sub(Y) (where the left adjoint maps a subobject m of X to the regular image of fm, and the right adjoint is given by pulling back a subobject of Y along f). Such functor amounts to a Grothendieck bifibration over ℂ. The conditions which we use to characterize semi-abelian and regular protomodular categories can be stated as self-dual conditions on the bifibration corresponding to the form of subobjects. This development is closely related to the work of Grandis on “categorical foundations of homological and homotopical algebra”. In his work, forms appear as the so-called “transfer functors” which associate to an object the lattice of “normal subobjects” of an object, where “normal” is defined relative to an ideal of null morphism admitting kernels and cokernels.

[1]  Zurab Janelidze,et al.  Split Short Five Lemma for Clots and Subtractive Categories , 2011, Appl. Categorical Struct..

[2]  Closedness properties of internal relations V: Linear Mal’tsev conditions , 2008 .

[3]  Kochendörffer S. MacLane, Homology (Die Grundlehren der mathematischen Wissenschaften, Band 114). X + 422 S. mit 7 Fig. Berlin/Göttingen/Heidelberg 1963. Springer-Verlag. Preis geb. DM 62,– , 1963 .

[4]  Saunders MacLane,et al.  Duality for groups , 1950 .

[5]  M. Grandis Transfer Functors and Projective Spaces , 1984 .

[6]  D. Bourn Normalization equivalence, kernel equivalence and affine categories , 1991 .

[7]  Zurab Janelidze Cover Relations on Categories , 2009, Appl. Categorical Struct..

[8]  Zurab Janelidze,et al.  Subtractive Categories , 2005, Appl. Categorical Struct..

[9]  D. Bourn 3 × 3 Lemma and Protomodularity , 2001 .

[10]  Marco Grandis,et al.  Homological Algebra: The Interplay of Homology with Distributive Lattices and Orthodox Semigroups , 2012 .

[11]  Dominique Bourn,et al.  Mal'cev, Protomodular, Homological and Semi-Abelian Categories , 2004 .

[12]  G. Janelidze,et al.  Modularity and descent , 1995 .

[13]  Z. Janelidze An axiomatic survey of diagram lemmas for non-abelian group-like structures , 2012 .

[14]  Marco Grandis,et al.  On the categorical foundations of homological and homotopical algebra , 1992 .

[15]  Luca Wurfel,et al.  Revetements Etales Et Groupe Fondamental Sga 1 , 2016 .

[16]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[17]  Michael Barr,et al.  Exact categories and categories of sheaves , 1971 .

[18]  M. Grandis Homological Algebra: In Strongly Non-Abelian Settings , 2013 .

[19]  A. Grothendieck Revetements etales et groupe fondamental , 1971 .

[20]  Oswald Wyler,et al.  Top categories and categorical topology , 1971 .

[21]  O. Wyler Weakly exact categories , 1966 .

[22]  Friday Ifeanyi Michael A Note on the Five Lemma , 2013, Appl. Categorical Struct..

[23]  W. Tholen,et al.  Semi-abelian categories , 2002 .

[24]  M. Raynaud,et al.  Categories Fibrees et Descente , 1971 .

[25]  Z. Janelidze THE POINTED SUBOBJECT FUNCTOR, 3 3 LEMMAS, AND SUBTRACTIVITY OF SPANS Dedicated to Dominique Bourn on the occasion of his sixtieth birthday , 2010 .

[26]  G. Janelidze,et al.  CHARACTERIZATION OF PROTOMODULAR VARIETIES OF UNIVERSAL ALGEBRAS , 2003 .

[27]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[28]  F. Borceux A survey of semi-abelian categories , 2004 .