Scanning protocols dedicated to smart velocity ranging in spectral OCT.

We introduce a new type of scanning protocols, called segmented protocols, which enable extracting multi-range flow velocity information from a single Spectral OCT data set. The protocols are evaluated using a well defined flow in a glass capillary. As an example of in vivo studies, we demonstrate two- and three-dimensional imaging of the retinal vascular system in the eyes of healthy volunteers. The flow velocity detection is performed using a method of Joint Spectral and Time domain OCT. Velocity ranging is demonstrated in imaging of retinal vasculature in the macular region and in the optic disk area characterized by different flow velocity values. Additionally, an enhanced visualization of retinal capillary network is presented in the close proximity to macula.

[1]  R. Leitgeb,et al.  Resonant Doppler flow imaging and optical vivisection of retinal blood vessels. , 2007, Optics express.

[2]  Ruikang K. Wang,et al.  Three dimensional optical angiography. , 2007, Optics express.

[3]  Toyohiko Yatagai,et al.  Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography. , 2007, Optics express.

[4]  Christoph Kolbitsch,et al.  Ultra-high-speed volumetric tomography of human retinal blood flow. , 2009, Optics express.

[5]  Benjamin J Vakoc,et al.  Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging , 2009, Nature Medicine.

[6]  T. Yatagai,et al.  Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography. , 2006, Applied optics.

[7]  Yonghong He,et al.  Determination of flow velocity vector based on Doppler shift and spectrum broadening with optical coherence tomography. , 2003, Optics letters.

[8]  Carmen A. Puliafito,et al.  Automatic retinal blood flow calculation using spectral domain optical coherence tomography , 2007 .

[9]  Iwona Gorczynska,et al.  Comparison of reflectivity maps and outer retinal topography in retinal disease by 3-D Fourier domain optical coherence tomography. , 2009, Optics express.

[10]  Anna Szkulmowska,et al.  Flow velocity estimation by complex ambiguity free joint Spectral and Time domain Optical Coherence Tomography. , 2009, Optics express.

[11]  J. Duker,et al.  Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. , 2004, Optics express.

[12]  T. Yatagai,et al.  Optical coherence angiography. , 2006, Optics express.

[13]  Shuichi Makita,et al.  Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography. , 2008, Optics letters.

[14]  Quing Zhu,et al.  Doppler angle and flow velocity mapping by combined Doppler shift and Doppler bandwidth measurements in optical Doppler tomography. , 2003, Optics letters.

[15]  Adrian Mariampillai,et al.  Speckle variance detection of microvasculature using swept-source optical coherence tomography. , 2008, Optics letters.

[16]  Joseph A Izatt,et al.  Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography. , 2009, Optics express.

[17]  J. Fujimoto,et al.  Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. , 2008, Optics express.

[18]  Maciej Wojtkowski,et al.  Real-time measurement of in-vitro and in-vivo blood flow with Fourier domain optical coherence tomography , 2004, SPIE BiOS.

[19]  Zhongping Chen,et al.  Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography. , 2002, Optics letters.

[20]  J. Izatt,et al.  Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. , 2008, Journal of biomedical optics.

[21]  R. Zawadzki,et al.  Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. , 2003, Optics express.

[22]  Anna Szkulmowska,et al.  Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies. , 2007, Journal of biomedical optics.

[23]  M. Wojtkowski,et al.  Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography. , 2009, Optics express.

[24]  M. Wojtkowski,et al.  Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography. , 2008, Optics express.

[25]  Joseph A. Izatt,et al.  Combined hyperspectral and spectral domain optical coherence tomography microscope for noninvasive hemodynamic imaging. , 2009 .

[26]  S. Yun,et al.  Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm. , 2005, Optics express.

[27]  E Reichel,et al.  Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration , 2008, British Journal of Ophthalmology.

[28]  Teresa C. Chen,et al.  In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography , 2003 .

[29]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[30]  M. Wojtkowski,et al.  Phase-resolved Doppler optical coherence tomography--limitations and improvements. , 2008, Optics letters.

[31]  S. Yun,et al.  Phase-resolved optical frequency domain imaging. , 2005, Optics express.

[32]  Quing Zhu,et al.  Quantifying Doppler angle and mapping flow velocity by a combination of Doppler-shift and Doppler-bandwidth measurements in optical Doppler tomography. , 2003, Applied optics.

[33]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[34]  Zhijia Yuan,et al.  Optical coherence Doppler tomography quantifies laser speckle contrast imaging for blood flow imaging in the rat cerebral cortex. , 2008, Optics letters.

[35]  Ruikang K. Wang,et al.  In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. , 2008, Optics express.

[36]  A. Cowey,et al.  Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography. , 2004, Journal of biomedical optics.

[37]  Theo Lasser,et al.  Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography. , 2007, Journal of biomedical optics.