Wavelet Analysis of Fractal Boundaries. Part 1: Local Exponents
暂无分享,去创建一个
[1] S. Havlin,et al. Fractals and Disordered Systems , 1991 .
[2] Stéphane Jaffard,et al. Multifractal formalism for functions part I: results valid for all functions , 1997 .
[3] B. Mandelbrot. On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars , 1975, Journal of Fluid Mechanics.
[4] Alain Arneodo,et al. Wavelet Based Multifractal Formalism: Applications to DNA Sequences, Satellite Images of the Cloud Structure, and Stock Market Data , 2002 .
[5] A. Zygmund,et al. Local properties of solutions of elliptic partial di erential equations , 1961 .
[6] S. Zucker,et al. Evaluating the fractal dimension of surfaces , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[7] Yves Meyer,et al. Wavelets, Vibrations and Scalings , 1997 .
[8] Yves Meyer,et al. Wavelet Analysis and Chirps , 1997 .
[9] Yimin Xiao. Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields , 1997 .
[10] Two Results Concerning Chirps and 2-Microlocal Exponents Prescription☆ , 1998 .
[11] B. Sapoval,et al. 7 Fractal surfaces and interfaces , 1991 .
[12] Y. Meyer,et al. Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions , 1996 .
[13] J. C. Vassilicos. The Multispiral Model of Turbulence and Intermittency , 1992 .
[14] S. Jaffard,et al. Morphology of the mixing layer in the Rayleigh-Taylor instability , 1995 .
[15] Meneveau,et al. Interface dimension in intermittent turbulence. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[16] R. Dalang,et al. Geography of the level sets of the Brownian sheet , 1993 .
[17] Emmanuel Bacry,et al. THE THERMODYNAMICS OF FRACTALS REVISITED WITH WAVELETS , 1995 .
[18] Y. Meyer. Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs , 1986 .
[19] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[20] John Christos Vassilicos,et al. Fractal dimensions and spectra of interfaces with application to turbulence , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[21] J. Aubry,et al. Random Wavelet Series , 2002 .
[22] S. Mallat. A wavelet tour of signal processing , 1998 .
[23] S. Jaffard. Pointwise smoothness, two-microlocalization and wavelet coefficients , 1991 .
[24] Sur les singularités oscillantes et le formalisme multifractal , 2002 .
[25] Yann Gousseau. Distribution de formes dans les images naturelles , 2000 .
[26] Paul E. Dimotakis,et al. Mixing in turbulent jets: scalar measures and isosurface geometry , 1996, Journal of Fluid Mechanics.
[27] S. Mallat. VI – Wavelet zoom , 1999 .
[28] Emmanuel Bacry,et al. Oscillating singularities on cantor sets: A grand-canonical multifractal formalism , 1997 .
[29] Alex M. Andrew,et al. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .
[30] Yves Meyer,et al. Wavelets - tools for science and technology , 1987 .