On the Automatic Computation of Error Bounds for Solutions of Nonlinear Equations
暂无分享,去创建一个
[1] Zeyuan Allen Zhu,et al. Randomized accuracy-aware program transformations for efficient approximate computations , 2012, POPL '12.
[2] Nathalie Revol,et al. Solving and Certifying the Solution of a Linear System , 2011, Reliab. Comput..
[3] Siegfried M. Rump,et al. INTLAB - INTerval LABoratory , 1998, SCAN.
[4] De Figueiredo,et al. Self-validated numerical methods and applications , 1997 .
[5] Andreas Griewank,et al. A mathematical view of automatic differentiation , 2003, Acta Numerica.
[6] Fred J. Vermolen,et al. Numerical Methods in Scientific Computing , 2006 .
[7] Woongki Baek,et al. Green: a framework for supporting energy-conscious programming using controlled approximation , 2010, PLDI '10.
[8] Martin Odersky,et al. Programming in Scala: A Comprehensive Step-by-Step Guide, 2nd Edition , 2010 .
[9] James Demmel,et al. Error bounds from extra-precise iterative refinement , 2006, TOMS.
[10] Alfio Quarteroni,et al. Scientific Computing with MATLAB and Octave , 2006 .
[11] Eric Goubault,et al. Towards an Industrial Use of FLUCTUAT on Safety-Critical Avionics Software , 2009, FMICS.
[12] Viktor Kuncak,et al. Trustworthy numerical computation in Scala , 2011, OOPSLA '11.
[13] Claude Marché,et al. Multi-Prover Verification of Floating-Point Programs , 2010, IJCAR.
[14] Siegfried M. Rump,et al. Verification methods: rigorous results using floating-point arithmetic , 2010, Acta Numerica.
[15] Chris Woodford,et al. Numerical Methods with Worked Examples , 1997 .
[16] Rudolf Krawczyk,et al. Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken , 1969, Computing.