Kernel Methods and Support Vector Machines

[1]  Sandeep Mandliya,et al.  A comparison of SVM and HMM classifiers in the off-line signature verification , 2015 .

[2]  Shiliang Sun,et al.  Multi-view Laplacian Support Vector Machines , 2011, ADMA.

[3]  Shiliang Sun,et al.  Multitask Multiclass Support Vector Machines , 2011, 2011 IEEE 11th International Conference on Data Mining Workshops.

[4]  Shiliang Sun,et al.  A review of optimization methodologies in support vector machines , 2011, Neurocomputing.

[5]  Shiliang Sun,et al.  Variational Inference for Infinite Mixtures of Gaussian Processes With Applications to Traffic Flow Prediction , 2011, IEEE Transactions on Intelligent Transportation Systems.

[6]  R. Dudley,et al.  High Dimensional Probability VI , 2011 .

[7]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[8]  Shiliang Sun,et al.  Nonlinear Combination of Multiple Kernels for Support Vector Machines , 2010, 2010 20th International Conference on Pattern Recognition.

[9]  Shiliang Sun,et al.  Sparse Semi-supervised Learning Using Conjugate Functions , 2010, J. Mach. Learn. Res..

[10]  David S. Rosenberg,et al.  Multiview point cloud kernels for semisupervised learning [Lecture Notes] , 2009, IEEE Signal Processing Magazine.

[11]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[12]  Partha Niyogi,et al.  Multiview point cloud kernels for semisupervised learning , 2009 .

[13]  Shiliang Sun Multitask learning for EEG-based biometrics , 2008, 2008 19th International Conference on Pattern Recognition.

[14]  Tu Bao Ho,et al.  An efficient kernel matrix evaluation measure , 2008, Pattern Recognit..

[15]  Yiming Ying,et al.  Learnability of Gaussians with Flexible Variances , 2007, J. Mach. Learn. Res..

[16]  Shiliang Sun,et al.  An experimental evaluation of ensemble methods for EEG signal classification , 2007, Pattern Recognit. Lett..

[17]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[18]  Yves Grandvalet,et al.  More efficiency in multiple kernel learning , 2007, ICML '07.

[19]  Cheng Soon Ong,et al.  Multiclass multiple kernel learning , 2007, ICML '07.

[20]  Gunnar Rätsch,et al.  Large Scale Multiple Kernel Learning , 2006, J. Mach. Learn. Res..

[21]  Dariu Gavrila,et al.  An Experimental Study on Pedestrian Classification , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Shotaro Akaho,et al.  A kernel method for canonical correlation analysis , 2006, ArXiv.

[23]  Charles A. Micchelli,et al.  A DC-programming algorithm for kernel selection , 2006, ICML.

[24]  Tu Bao Ho,et al.  A bottom-up method for simplifying support vector solutions , 2006, IEEE Transactions on Neural Networks.

[25]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[26]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[27]  Simon Osindero,et al.  An Alternative Infinite Mixture Of Gaussian Process Experts , 2005, NIPS.

[28]  John Shawe-Taylor,et al.  Two view learning: SVM-2K, Theory and Practice , 2005, NIPS.

[29]  Alexander J. Smola,et al.  Learning the Kernel with Hyperkernels , 2005, J. Mach. Learn. Res..

[30]  Charles A. Micchelli,et al.  Learning the Kernel Function via Regularization , 2005, J. Mach. Learn. Res..

[31]  Simon Rogers,et al.  Hierarchic Bayesian models for kernel learning , 2005, ICML.

[32]  John Shawe-Taylor,et al.  Canonical Correlation Analysis: An Overview with Application to Learning Methods , 2004, Neural Computation.

[33]  Massimiliano Pontil,et al.  Regularized multi--task learning , 2004, KDD.

[34]  Michael I. Jordan,et al.  Multiple kernel learning, conic duality, and the SMO algorithm , 2004, ICML.

[35]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..

[36]  C.W. Anderson,et al.  Comparison of linear, nonlinear, and feature selection methods for EEG signal classification , 2003, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[37]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[38]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[39]  John Shawe-Taylor,et al.  PAC Bayes and Margins , 2003 .

[40]  Nello Cristianini,et al.  On the Eigenspectrum of the Gram Matrix and Its Relationship to the Operator Eigenspectrum , 2002, Discovery Science.

[41]  Nello Cristianini,et al.  On the generalization of soft margin algorithms , 2002, IEEE Trans. Inf. Theory.

[42]  Tong Zhang,et al.  Covering Number Bounds of Certain Regularized Linear Function Classes , 2002, J. Mach. Learn. Res..

[43]  André Elisseeff,et al.  Stability and Generalization , 2002, J. Mach. Learn. Res..

[44]  Peter L. Bartlett,et al.  Rademacher and Gaussian Complexities: Risk Bounds and Structural Results , 2003, J. Mach. Learn. Res..

[45]  Horst Bischof,et al.  Nonlinear Feature Extraction Using Generalized Canonical Correlation Analysis , 2001, ICANN.

[46]  Anastasios Tefas,et al.  Using Support Vector Machines to Enhance the Performance of Elastic Graph Matching for Frontal Face Authentication , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Carl E. Rasmussen,et al.  Infinite Mixtures of Gaussian Process Experts , 2001, NIPS.

[48]  Michael Collins,et al.  Convolution Kernels for Natural Language , 2001, NIPS.

[49]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[50]  V. Koltchinskii,et al.  Rademacher Processes and Bounding the Risk of Function Learning , 2004, math/0405338.

[51]  B. Schölkopf,et al.  Sparse Greedy Matrix Approximation for Machine Learning , 2000, ICML.

[52]  S. Boucheron,et al.  A sharp concentration inequality with applications , 1999, Random Struct. Algorithms.

[53]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[54]  S. Boucheron,et al.  A sharp concentration inequality with applications , 1999, Random Struct. Algorithms.

[55]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[56]  Pei Ling Lai,et al.  Ica Using Kernel Canonical Correlation Analysis , 2000 .

[57]  Volker Tresp,et al.  Mixtures of Gaussian Processes , 2000, NIPS.

[58]  Christopher K. I. Williams,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[59]  Peter L. Bartlett,et al.  Neural Network Learning - Theoretical Foundations , 1999 .

[60]  R. Horst,et al.  DC Programming: Overview , 1999 .

[61]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[62]  David Haussler,et al.  Probabilistic kernel regression models , 1999, AISTATS.

[63]  John Shawe-Taylor,et al.  Generalization Performance of Support Vector Machines and Other Pattern Classifiers , 1999 .

[64]  David Haussler,et al.  Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.

[65]  John Shawe-Taylor,et al.  Structural Risk Minimization Over Data-Dependent Hierarchies , 1998, IEEE Trans. Inf. Theory.

[66]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[67]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[68]  Peter L. Bartlett,et al.  The Sample Complexity of Pattern Classification with Neural Networks: The Size of the Weights is More Important than the Size of the Network , 1998, IEEE Trans. Inf. Theory.

[69]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[70]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[71]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[72]  Federico Girosi,et al.  Support Vector Machines: Training and Applications , 1997 .

[73]  Yoav Freund,et al.  Boosting the margin: A new explanation for the effectiveness of voting methods , 1997, ICML.

[74]  M. Talagrand New concentration inequalities in product spaces , 1996 .

[75]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[76]  Umesh V. Vazirani,et al.  An Introduction to Computational Learning Theory , 1994 .

[77]  John Shawe-Taylor,et al.  A Result of Vapnik with Applications , 1993, Discret. Appl. Math..

[78]  Noga Alon,et al.  Scale-sensitive dimensions, uniform convergence, and learnability , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[79]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[80]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[81]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[82]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[83]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[84]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[85]  David G. Stork,et al.  Pattern Classification , 1973 .

[86]  J. Kettenring,et al.  Canonical Analysis of Several Sets of Variables , 2022 .

[87]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[88]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[89]  Kazuoki Azuma WEIGHTED SUMS OF CERTAIN DEPENDENT RANDOM VARIABLES , 1967 .

[90]  M. Aizerman,et al.  Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .

[91]  W. Hoeffding Probability inequalities for sum of bounded random variables , 1963 .

[92]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[93]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[94]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[95]  J. Mercer Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .