Linear‐scaling Cholesky decomposition

We present linear‐scaling routines for the calculation of the Cholesky decomposition of a symmetric positive‐definite matrix and its inverse. As an example, we consider the inversion of the overlap matrix of DNA and amylose fragments as well as of linear alkanes, where the largest system corresponds to a 21,442 × 21,442 matrix. The efficiency and the scaling behavior are discussed and compared to standard LAPACK routines. Our Cholesky routines are publicly available on the web. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2008

[1]  M. Head‐Gordon,et al.  Curvy steps for density matrix based energy minimization: tensor formulation and toy applications , 2003 .

[2]  Martin Head-Gordon,et al.  A tensor formulation of many-electron theory in a nonorthogonal single-particle basis , 1998 .

[3]  Trygve Helgaker,et al.  Direct optimization of the atomic-orbital density matrix using the conjugate-gradient method with a multilevel preconditioner , 2001 .

[4]  A. Niklasson Iterative refinement method for the approximate factorization of a matrix inverse , 2004 .

[5]  Jörg Kussmann,et al.  Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree-Fock and density-functional theory. , 2007, The Journal of chemical physics.

[6]  Andreas Bohne,et al.  W3-SWEET: Carbohydrate Modeling By Internet , 1998 .

[7]  Eric Schwegler,et al.  Linear scaling computation of the Fock matrix. II. Rigorous bounds on exchange integrals and incremental Fock build , 1997 .

[8]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[9]  David R. Bowler,et al.  Practical methods for ab initio calculations on thousands of atoms , 1999 .

[10]  Christian Ochsenfeld,et al.  Multipole-based integral estimates for the rigorous description of distance dependence in two-electron integrals. , 2005, The Journal of chemical physics.

[11]  Thomas Bondo Pedersen,et al.  Reduced scaling in electronic structure calculations using Cholesky decompositions , 2003 .

[12]  Christian Ochsenfeld,et al.  Linear scaling exchange gradients for Hartree–Fock and hybrid density functional theory , 2000 .

[13]  Benny G. Johnson,et al.  THE CONTINUOUS FAST MULTIPOLE METHOD , 1994 .

[14]  J. Kussmann,et al.  Linear‐Scaling Methods in Quantum Chemistry , 2007 .

[15]  R. Jaquet Investigations with the finite element method on the Cyber 205 , 1987 .

[16]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[17]  Thomas Bondo Pedersen,et al.  Polarizability and optical rotation calculated from the approximate coupled cluster singles and doubles CC2 linear response theory using Cholesky decompositions. , 2004, The Journal of chemical physics.

[18]  W. Press,et al.  Numerical Recipes in C++: The Art of Scientific Computing (2nd edn)1 Numerical Recipes Example Book (C++) (2nd edn)2 Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version3 , 2003 .

[19]  Yihan Shao,et al.  Sparse matrix multiplications for linear scaling electronic structure calculations in an atom‐centered basis set using multiatom blocks , 2003, J. Comput. Chem..

[20]  Jürgen Gauss,et al.  Helical packing of discotic hexaphenyl hexa-peri-hexabenzocoronenes: theory and experiment. , 2007, The journal of physical chemistry. B.

[21]  Thomas Schrader,et al.  Molecular tweezer and clip in aqueous solution: unexpected self-assembly, powerful host-guest complex formation, quantum chemical 1H NMR shift calculation. , 2006, Journal of the American Chemical Society.

[22]  David R. Bowler,et al.  Recent progress in linear scaling ab initio electronic structure techniques , 2002 .

[23]  Sergio Pissanetzky,et al.  Sparse Matrix Technology , 1984 .

[24]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[25]  M. Challacombe A general parallel sparse-blocked matrix multiply for linear scaling SCF theory , 2000 .

[26]  Taisuke Ozaki,et al.  Efficient recursion method for inverting an overlap matrix , 2001 .

[27]  Jörg Kussmann,et al.  Density matrix-based variational quantum Monte Carlo providing an asymptotically linear scaling behavior for the local energy , 2007 .

[28]  Fred G. Gustavson,et al.  Two Fast Algorithms for Sparse Matrices: Multiplication and Permuted Transposition , 1978, TOMS.

[29]  Henrik Koch,et al.  Size-intensive decomposition of orbital energy denominators , 2000 .

[30]  Eric Schwegler,et al.  Fast assembly of the Coulomb matrix: A quantum chemical tree code , 1996 .

[31]  Gustavo E. Scuseria,et al.  What is the Best Alternative to Diagonalization of the Hamiltonian in Large Scale Semiempirical Calculations , 1999 .

[32]  Gustavo E. Scuseria,et al.  Linear scaling conjugate gradient density matrix search as an alternative to diagonalization for first principles electronic structure calculations , 1997 .

[33]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[34]  Li,et al.  Density-matrix electronic-structure method with linear system-size scaling. , 1993, Physical review. B, Condensed matter.

[35]  Jörg Kussmann,et al.  Ab initio NMR spectra for molecular systems with a thousand and more atoms: a linear-scaling method. , 2004, Angewandte Chemie.

[36]  Gustavo E. Scuseria,et al.  Linear Scaling Density Functional Calculations with Gaussian Orbitals , 1999 .

[37]  Yihan Shao,et al.  Efficient evaluation of the Coulomb force in density-functional theory calculations , 2001 .

[38]  Gustavo E. Scuseria,et al.  Semiempirical methods with conjugate gradient density matrix search to replace diagonalization for molecular systems containing thousands of atoms , 1997 .

[39]  Trygve Helgaker,et al.  Geometrical derivatives and magnetic properties in atomic-orbital density-based Hartree-Fock theory , 2001 .

[40]  Vanderbilt,et al.  Generalization of the density-matrix method to a nonorthogonal basis. , 1994, Physical review. B, Condensed matter.

[41]  Trygve Helgaker,et al.  Direct optimization of the AO density matrix in Hartree-Fock and Kohn-Sham theories , 2000 .

[42]  Christian Ochsenfeld,et al.  A reformulation of the coupled perturbed self-consistent field equations entirely within a local atomic orbital density matrix-based scheme , 1997 .

[43]  Michael J. Frisch,et al.  Achieving Linear Scaling for the Electronic Quantum Coulomb Problem , 1996, Science.

[44]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[45]  Matt Challacombe,et al.  A simplified density matrix minimization for linear scaling self-consistent field theory , 1999 .

[46]  Stefan Goedecker,et al.  Linear scaling electronic structure methods in chemistry and physics , 2003, Comput. Sci. Eng..

[47]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[48]  Gustavo E. Scuseria,et al.  Comparison of Conjugate Gradient Density Matrix Search and Chebyshev Expansion Methods for Avoiding Diagonalization in Large-Scale Electronic Structure Calculations , 1998 .

[49]  Andreas Bohne,et al.  SWEET - WWW-based rapid 3D construction of oligo- and polysaccharides , 1999, Bioinform..

[50]  Michael J. Frisch,et al.  A linear scaling method for Hartree–Fock exchange calculations of large molecules , 1996 .

[51]  Emanuel H. Rubensson,et al.  Systematic sparse matrix error control for linear scaling electronic structure calculations , 2005, J. Comput. Chem..

[52]  Henrik Koch,et al.  Polarizabilities of small annulenes from Cholesky CC2 linear response theory , 2004 .

[53]  K. Bathe Finite-Elemente-Methoden , 1986 .

[54]  Jörg Kussmann,et al.  Adding electron-nuclear cusps to Gaussian basis functions for molecular quantum Monte Carlo calculations , 2007 .

[55]  Christian Ochsenfeld,et al.  Linear and sublinear scaling formation of Hartree-Fock-type exchange matrices , 1998 .