Interfacing nanocarbons with organic and inorganic semiconductors: from nanocrystals/quantum dots to extended tetrathiafulvalenes.

There is no doubt that the outstanding optical and electronic properties that low-dimensional carbon-based nanomaterials exhibit call for their implementation into optoelectronic devices. However, to harvest the enormous potential of these nanocarbons it is essential to probe them in multifunctional electron donor-acceptor systems, placing particular attention on the interactions between electron donors/electron acceptors and nanocarbons. This feature article outlines challenges and recent breakthroughs in the area of interfacing organic and inorganic semiconductors with low-dimensional nanocarbons that range from fullerenes (0D) and carbon nanotubes (1D) to graphene (2D). In the context of organic semiconductors, we focus on aromatic macrocycles and extended tetrathiafulvalenes, and CdTe nanocrystals/quantum dots represent the inorganic semiconductors. Particular emphasis is placed on designing and probing solar energy conversion nanohybrids.

[1]  T. Umeyama,et al.  Self‐Assembling Porphyrins and Phthalocyanines for Photoinduced Charge Separation and Charge Transport , 2012 .

[2]  A. Hirsch,et al.  Tetrathiafulvalene-based nanotweezers-noncovalent binding of carbon nanotubes in aqueous media with charge transfer implications. , 2012, Journal of the American Chemical Society.

[3]  K. Matsushige,et al.  Preparation and photophysical and photoelectrochemical properties of a covalently fixed porphyrin-chemically converted graphene composite. , 2012, Chemistry.

[4]  D. Guldi,et al.  Immobilizing NIR absorbing azulenocyanines onto single wall carbon nanotubes—from charge transfer to photovoltaics , 2012 .

[5]  Gordon G Wallace,et al.  Porphyrins for dye-sensitised solar cells: new insights into efficiency-determining electron transfer steps. , 2012, Chemical communications.

[6]  D. Guldi,et al.  Non-covalent versus covalent donor-acceptor systems based on near-infrared absorbing azulenocyanines and C60 fullerene derivatives. , 2012, Chemical communications.

[7]  N. Jux,et al.  Toward combining graphene and QDs: assembling CdTe QDs to exfoliated graphite and nanographene in water. , 2012, ACS nano.

[8]  Y. Coffinier,et al.  Preparation of graphene/tetrathiafulvalene nanocomposite switchable surfaces. , 2012, Chemical communications.

[9]  D. Guldi,et al.  Decorating polyelectrolyte wrapped SWNTs with CdTe quantum dots for solar energy conversion. , 2012, Faraday discussions.

[10]  A. Graja,et al.  Photoinduced electron transfer processes in fullerene–organic chromophore systems , 2011 .

[11]  M. Prato,et al.  Charge transfer events in semiconducting single-wall carbon nanotubes. , 2011, Journal of the American Chemical Society.

[12]  D. Guldi,et al.  Enhancing Photocurrent Efficiencies by Resonance Energy Transfer in CdTe Quantum Dot Multilayers: Towards Rainbow Solar Cells , 2011, Advanced materials.

[13]  Bryan M. Wong,et al.  Spectroscopic properties of nanotube-chromophore hybrids. , 2011, ACS nano.

[14]  J. Mohanraj,et al.  Modular engineering of H-bonded supramolecular polymers for reversible functionalization of carbon nanotubes. , 2011, Journal of the American Chemical Society.

[15]  D. Guldi,et al.  Tuning and optimizing the intrinsic interactions between phthalocyanine-based PPV oligomers and single-wall carbon nanotubes toward n-type/p-type , 2011 .

[16]  J. Warner,et al.  Noncovalent binding of carbon nanotubes by porphyrin oligomers. , 2011, Angewandte Chemie.

[17]  N. Jux,et al.  Towards tunable graphene/phthalocyanine-PPV hybrid systems. , 2011, Angewandte Chemie.

[18]  P. Kamat,et al.  Reduced graphene oxide and porphyrin. An interactive affair in 2-D. , 2010, ACS nano.

[19]  Ronald A. Smaldone,et al.  Reversible dispersion and release of carbon nanotubes using foldable oligomers. , 2010, Journal of the American Chemical Society.

[20]  C. Rao,et al.  Charge-transfer with graphene and nanotubes , 2010 .

[21]  D. Guldi,et al.  Innovative inorganic-organic nanohybrid materials: coupling quantum dots to carbon nanotubes. , 2010, Angewandte Chemie.

[22]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[23]  Atula S. D. Sandanayaka,et al.  Sensitive efficiency of photoinduced electron transfer to band gaps of semiconductive single-walled carbon nanotubes with supramolecularly attached zinc porphyrin bearing pyrene glues. , 2010, Journal of the American Chemical Society.

[24]  M. Uchiyama,et al.  Azulenocyanine: a new family of phthalocyanines with intense near-IR absorption. , 2010, Journal of the American Chemical Society.

[25]  Hee‐Tae Jung,et al.  Porphyrin Functionalized Graphene Sheets in Aqueous Suspensions: From the Preparation of Graphene Sheets to Highly Conductive Graphene Films , 2010 .

[26]  D. Guldi,et al.  Covalent and noncovalent phthalocyanine-carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics. , 2010, Chemical reviews.

[27]  C. Rao,et al.  A simple method of separating metallic and semiconducting single-walled carbon nanotubes based on molecular charge transfer. , 2010, Journal of the American Chemical Society.

[28]  P. Kamat Graphene‐Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two‐Dimensional Carbon Support , 2010 .

[29]  R. Kaner,et al.  Honeycomb carbon: a review of graphene. , 2010, Chemical reviews.

[30]  F. D’Souza,et al.  Supramolecular Donor—Acceptor Hybrids of Porphyrins/Phthalocyanines with Fullerenes/Carbon Nanotubes: Electron Transfer, Sensing, Switching, and Catalytic Applications , 2009 .

[31]  Andreas Hirsch,et al.  Soluble Graphene: Generation of Aqueous Graphene Solutions Aided by a Perylenebisimide‐Based Bolaamphiphile , 2009 .

[32]  T. Moore,et al.  Solar fuels via artificial photosynthesis. , 2009, Accounts of chemical research.

[33]  M. Melucci,et al.  High-contrast visualization of graphene oxide on dye-sensitized glass, quartz, and silicon by fluorescence quenching. , 2009, Journal of the American Chemical Society.

[34]  M. Wasielewski,et al.  Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. , 2009, Accounts of chemical research.

[35]  P. Jégou,et al.  Efficient functionalization of carbon nanotubes with porphyrin dendrons via click chemistry. , 2009, Journal of the American Chemical Society.

[36]  Francis D'Souza,et al.  Supramolecular donor-acceptor hybrids of porphyrins/phthalocyanines with fullerenes/carbon nanotubes: electron transfer, sensing, switching, and catalytic applications. , 2009, Chemical communications.

[37]  Wei Gao,et al.  New insights into the structure and reduction of graphite oxide. , 2009, Nature chemistry.

[38]  Zhongfan Liu,et al.  Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. , 2009, Journal of the American Chemical Society.

[39]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[40]  D. Guldi,et al.  Synthesis, photophysical and electrochemical characterization of phthalocyanine-based poly(p-phenylenevinylene) oligomers. , 2009, Dalton transactions.

[41]  Peter Sutter,et al.  Epitaxial graphene: How silicon leaves the scene. , 2009, Nature materials.

[42]  C. N. R. Rao,et al.  Synthesis, Structure, and Properties of Boron‐ and Nitrogen‐Doped Graphene , 2009, 0902.3077.

[43]  H. B. Weber,et al.  Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. , 2009, Nature materials.

[44]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[45]  M. Herranz,et al.  Supramolecular chemistry of π-extended analogues of TTF and carbon nanostructures , 2009 .

[46]  Y. Feng,et al.  Tuning the electronic structure of graphene by an organic molecule. , 2009, The journal of physical chemistry. B.

[47]  Werner Marx,et al.  Graphene - A rising star in view of scientometrics , 2008, 0808.3320.

[48]  Carlos Castillo-Chavez,et al.  Population modeling of the emergence and development of scientific fields , 2008, Scientometrics.

[49]  J. Coleman,et al.  High-yield production of graphene by liquid-phase exfoliation of graphite. , 2008, Nature nanotechnology.

[50]  Chun Li,et al.  Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. , 2008, Journal of the American Chemical Society.

[51]  J. Flege,et al.  Epitaxial graphene on ruthenium. , 2008, Nature materials.

[52]  H. R. Krishnamurthy,et al.  Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. , 2008, Nature nanotechnology.

[53]  H. García,et al.  Heck reaction on single-walled carbon nanotubes. Synthesis and photochemical properties of a wall functionalized SWNT-anthracene derivative , 2008 .

[54]  S. Bachilo,et al.  Efficient photosensitized energy transfer and near-IR fluorescence from porphyrin–SWNT complexes , 2008 .

[55]  A. Hirsch,et al.  Preferred functionalization of metallic and small-diameter single-walled carbon nanotubes by nucleophilic addition of organolithium and -magnesium compounds followed by reoxidation. , 2008, Chemistry.

[56]  M. Prato,et al.  Spectroscopic characterization of photolytically generated radical ion pairs in single-wall carbon nanotubes bearing surface-immobilized tetrathiafulvalenes. , 2008, Journal of the American Chemical Society.

[57]  Thomas A. Klar,et al.  Aqueous synthesis of thiol-capped CdTe nanocrystals : State-of-the-art , 2007 .

[58]  D. Guldi,et al.  Electronic communication in tetrathiafulvalene (TTF)/C60 systems: toward molecular solar energy conversion materials? , 2007, Accounts of chemical research.

[59]  Seunghun Hong,et al.  Nanotube electronics: a flexible approach to mobility. , 2007, Nature nanotechnology.

[60]  D. Guldi,et al.  Single-wall carbon nanotubes bearing covalently linked phthalocyanines--photoinduced electron transfer. , 2007, Journal of the American Chemical Society.

[61]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[62]  Maurizio Prato,et al.  Dendrimer-functionalized single-wall carbon nanotubes: synthesis, characterization, and photoinduced electron transfer. , 2006, Journal of the American Chemical Society.

[63]  M. Prato,et al.  Control over electron transfer in tetrathiafulvalene-modified single-walled carbon nanotubes. , 2006, Angewandte Chemie.

[64]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[65]  Mercedes Alvaro,et al.  Synthesis, photochemistry, and electrochemistry of single-wall carbon nanotubes with pendent pyridyl groups and of their metal complexes with zinc porphyrin. Comparison with pyridyl-bearing fullerenes. , 2006, Journal of the American Chemical Society.

[66]  Richard G Compton,et al.  Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. , 2006, Small.

[67]  M. Prato,et al.  CNT-CdTe versatile donor-acceptor nanohybrids. , 2006, Journal of the American Chemical Society.

[68]  M. Prato,et al.  Nanosized inorganic/organic composites for solar energy conversion , 2005 .

[69]  M. Shiraishi,et al.  Spectroscopic characterization of single-walled carbon nanotubes carrier-doped by encapsulation of TCNQ , 2005 .

[70]  Fred Wudl,et al.  Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: the brick and mortar of organic electronics. , 2004, Chemical reviews.

[71]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[72]  M. Prato,et al.  Versatile organic (fullerene)-inorganic (CdTe nanoparticle) nanoensembles. , 2004, Journal of the American Chemical Society.

[73]  D. Guldi,et al.  Probing charge separation in structurally different C60/exTTF ensembles. , 2003, The Journal of organic chemistry.

[74]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[75]  D. Guldi,et al.  Thermally Reversible C60-Based Donor—Acceptor Ensembles , 2003 .

[76]  D. Guldi,et al.  Thermally reversible C60-based donor-acceptor ensembles. , 2002, Chemical communications.

[77]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[78]  Tibor Braun,et al.  The Epidemic Spread of Fullerene Research , 1992 .

[79]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[80]  W. S. Hummers,et al.  Preparation of Graphitic Oxide , 1958 .

[81]  L. Staudenmaier,et al.  Verfahren zur Darstellung der Graphitsäure , 1898 .

[82]  R. Ruoff,et al.  The chemistry of graphene oxide. , 2010, Chemical Society reviews.

[83]  Andrey L. Rogach,et al.  Semiconductor Nanocrystal Quantum Dots , 2008 .

[84]  J. Nierengarten,et al.  Fullerenes : principles and applications , 2007 .

[85]  D. Guldi,et al.  Stabilisation of charge-separated states via gain of aromaticity and planarity of the donor moiety in C60-based dyads , 2000 .

[86]  Benjamin Collins Brodie,et al.  On the Atomic Weight of Graphite , 1859 .