Imaging and functional characterization of crop root systems using spectroscopic electrical impedance measurements

[1]  H. Vereecken,et al.  Field evaluation of broadband spectral electrical imaging for soil and aquifer characterization , 2018, Journal of Applied Geophysics.

[2]  S. Hubbard,et al.  Small-scale characterization of vine plant root water uptake via 3-D electrical resistivity tomography and mise-à-la-masse method , 2018, Hydrology and Earth System Sciences.

[3]  Susan S. Hubbard,et al.  Small-scale characterization of vine plant root water uptake via 3-D electrical resistivity tomography and mise-à-la-masse method , 2018, Hydrology and Earth System Sciences.

[4]  Benjamin Berkels,et al.  Automated stacking of seismic reflection data based on non-rigid image matching , 2018 .

[5]  A. Kemna,et al.  Electrochemical polarization around metallic particles — Part 1: The role of diffuse-layer and volume-diffusion relaxation , 2018, GEOPHYSICS.

[6]  P. Van Cappellen,et al.  Linking Spectral Induced Polarization (SIP) and Subsurface Microbial Processes: Results from Sand Column Incubation Experiments. , 2018, Environmental science & technology.

[7]  Xuejun Dong,et al.  Ground penetrating radar (GPR) detects fine roots of agricultural crops in the field , 2018, Plant and Soil.

[8]  Jan Vanderborght,et al.  A hybrid analytical-numerical method for solving water flow equations in root hydraulic architectures , 2017 .

[9]  Michelle Watt,et al.  OpenSimRoot: widening the scope and application of root architectural models , 2017, The New phytologist.

[10]  Mathieu Javaux,et al.  Novel multiscale insights into the composite nature of water transport in roots , 2017, bioRxiv.

[11]  Andreas Kemna,et al.  Reconstruction quality of SIP parameters in multi-frequency complex resistivity imaging , 2017 .

[12]  B. Ma,et al.  Quantification of canola root morphological traits under heat and drought stresses with electrical measurements , 2017, Plant and Soil.

[13]  W. R. Whalley,et al.  Methods to estimate changes in soil water for phenotyping root activity in the field , 2017, Plant and Soil.

[14]  Andreas Kemna,et al.  Multi-frequency electrical impedance tomography as a non-invasive tool to characterize and monitor crop root systems , 2016 .

[15]  S. Kruschwitz,et al.  Induced polarization and pore radius — A discussion , 2016 .

[16]  Stanley J. Miklavcic,et al.  Modeling Root Zone Effects on Preferred Pathways for the Passive Transport of Ions and Water in Plant Roots , 2016, Front. Plant Sci..

[17]  C. Doussan,et al.  Benchmarking electrical methods for rapid estimation of root biomass , 2016, Plant Methods.

[18]  A. Kemna,et al.  Relationship between Cole-Cole model parameters and spectral decomposition parameters derived from SIP data , 2016 .

[19]  K. Rajkai,et al.  Indirect monitoring of root activity in soybean cultivars under contrasting moisture regimes by measuring electrical capacitance , 2016, Acta Physiologiae Plantarum.

[20]  W. Otten,et al.  Challenges in imaging and predictive modeling of rhizosphere processes , 2016, Plant and Soil.

[21]  N. Graham,et al.  High-throughput phenotyping (HTP) identifies seedling root traits linked to variation in seed yield and nutrient capture in field-grown oilseed rape (Brassica napus L.) , 2016, Annals of botany.

[22]  A. Kemna,et al.  Debye decomposition of time-lapse spectral induced polarisation data , 2016, Comput. Geosci..

[23]  C. Robertson McClung,et al.  Integrating circadian dynamics with physiological processes in plants , 2015, Nature Reviews Genetics.

[24]  Yun Zhang,et al.  Application of 3D electrical capacitance tomography in probing anomalous blocks in water , 2015 .

[25]  Ulrich Schurr,et al.  Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: potential and challenges for root trait quantification , 2015, Plant Methods.

[26]  Cornelia Schmidt-Hattenberger,et al.  Constructive optimization of electrode locations for target-focused resistivity monitoring , 2015 .

[27]  H. Scharr,et al.  HyperART: non-invasive quantification of leaf traits using hyperspectral absorption-reflectance-transmittance imaging , 2015, Plant Methods.

[28]  Ettore Cardarelli,et al.  3D complex resistivity tomography on cylindrical models using EIDORS , 2014 .

[29]  K. Rajkai,et al.  Simultaneous monitoring of electrical capacitance and water uptake activity of plant root system , 2014 .

[30]  Mathieu Javaux,et al.  Impact of contrasted maize root traits at flowering on water stress tolerance - A simulation study , 2014 .

[31]  M. Dentith,et al.  Geophysics for the Mineral Exploration Geoscientist , 2014 .

[32]  Raimo Silvennoinen,et al.  Detecting mycorrhizal colonisation in Scots pine roots using electrical impedance spectra , 2014 .

[33]  Bruce Grieve,et al.  Electrical impedance imaging of water distribution in the root zone , 2014 .

[34]  J. Lorenzo Mark E. Everett: Near-Surface Applied Geophysics , 2014, Marine Geophysical Research.

[35]  Stanley J Miklavcic,et al.  On the competitive uptake and transport of ions through differentiated root tissues. , 2014, Journal of Theoretical Biology.

[36]  T. Středa,et al.  Improved wheat grain yield by a new method of root selection , 2014, Agronomy for Sustainable Development.

[37]  Andrey Tarasov,et al.  On the use of the Cole–Cole equations in spectral induced polarization , 2013 .

[38]  Peter J. Gregory,et al.  Matching roots to their environment. , 2013, Annals of botany.

[39]  M. Karaoulis,et al.  Low-frequency complex conductivity of sandy and clayey materials. , 2013, Journal of colloid and interface science.

[40]  Mark E. Everett,et al.  Near-Surface Applied Geophysics , 2013 .

[41]  Giorgio De Donno,et al.  2D tomographic inversion of complex resistivity data on cylindrical models , 2013 .

[42]  Kálmán Rajkai,et al.  Electrical impedance and capacitance method: A new approach for detection of functional aspects of arbuscular mycorrhizal colonization in maize , 2013 .

[43]  L. Kavalieris,et al.  Electrical capacitance of bean (Vicia faba) root systems was related to tissue density—a test for the Dalton Model , 2013, Plant and Soil.

[44]  H. Vereecken,et al.  Spectral induced polarization measurements on variably saturated sand‐clay mixtures , 2012 .

[45]  K. Williams,et al.  An overview of the spectral induced polarization method for near-surface applications , 2012 .

[46]  André Revil,et al.  A new model for the spectral induced polarization signature of bacterial growth in porous media , 2012 .

[47]  Johannes Pfeifer,et al.  Evidence of improved water uptake from subsoil by spring wheat following lucerne in a temperate humid climate , 2012 .

[48]  Egon Zimmermann,et al.  Optimal electrode design for improved phase accuracy of spectral EIT images , 2012 .

[49]  S. A. Hagrey,et al.  Numerical and experimental mapping of small root zones using optimized surface and borehole resistivity tomography , 2011 .

[50]  Stefano Mancuso,et al.  Measuring roots :an updated approach , 2011 .

[51]  Nicolas Florsch,et al.  Determination of permeability from spectral induced polarization in granular media , 2010 .

[52]  H. Vereecken,et al.  Investigating Preferential Flow Processes in a Forest Soil Using Time Domain Reflectometry and Electrical Resistivity Tomography , 2010 .

[53]  Peng-ling Wang,et al.  The surface charge density of plant cell membranes (σ): an attempt to resolve conflicting values for intrinsic σ , 2010, Journal of experimental botany.

[54]  Hans-Jörg Vogel,et al.  Dynamics of soil water content in the rhizosphere , 2010, Plant and Soil.

[55]  Andrei S. Dukhin,et al.  Fundamentals of Interface and Colloid Science , 2010 .

[56]  José A. Gómez,et al.  Multi-electrode 3D resistivity imaging of alfalfa root zone , 2009 .

[57]  Michael D. Cramer,et al.  The importance of nutritional regulation of plant water flux , 2009, Oecologia.

[58]  Anders Kaestner,et al.  Neutron radiography as a tool for revealing root development in soil: capabilities and limitations , 2009, Plant and Soil.

[59]  C. Doussan,et al.  Estimation of the spatial variability of root water uptake of maize and sorghum at the field scale by electrical resistivity tomography , 2009, Plant and Soil.

[60]  Ulrike Werban,et al.  Monitoring of root‐zone water content in the laboratory by 2D geoelectrical tomography , 2008 .

[61]  Andrea Rinaldo,et al.  Sea level rise, hydrologic runoff, and the flooding of Venice , 2008 .

[62]  Andreas Weller,et al.  A new approach to fitting induced-polarization spectra , 2008 .

[63]  Harry Vereecken,et al.  EIT measurement system with high phase accuracy for the imaging of spectral induced polarization properties of soils and sediments , 2008 .

[64]  C. Doussan,et al.  Non‐invasive monitoring of water infiltration in a silty clay loam soil using Spectral Induced Polarization , 2008 .

[65]  Jan Vanderborght,et al.  Use of a Three‐Dimensional Detailed Modeling Approach for Predicting Root Water Uptake , 2008 .

[66]  Gianfranco Morelli,et al.  In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging. , 2008, Tree physiology.

[67]  O. Chloupek The relationship between electric capacitance and some other parameters of plant roots , 1972, Biologia Plantarum.

[68]  O. Chloupek Die Bewertung des Wurzelsystems von Senfpflanzen auf Grund der dielektrischen Eigenschaften und mit Rücksicht auf den Endertrag , 2008, Biologia Plantarum.

[69]  M. Carvajal,et al.  Different cation stresses affect specifically osmotic root hydraulic conductance, involving aquaporins, ATPase and xylem loading of ions in Capsicum annuum, L. plants. , 2007, Journal of plant physiology.

[70]  Jonathan Chambers,et al.  Improved strategies for the automatic selection of optimized sets of electrical resistivity tomography measurement configurations , 2006 .

[71]  T. Günther,et al.  Three‐dimensional modelling and inversion of dc resistivity data incorporating topography – II. Inversion , 2006 .

[72]  Harry Ozier-Lafontaine,et al.  Analysis of Root Growth by Impedance Spectroscopy (EIS) , 2005, Plant and Soil.

[73]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[74]  A. Binley,et al.  DC Resistivity and Induced Polarization Methods , 2005 .

[75]  E. J. Morton,et al.  Non-invasive imaging of roots with high resolution X-ray micro-tomography , 2003, Plant and Soil.

[76]  D. Clarkson,et al.  Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function , 1996, Planta.

[77]  F. N. Dalton In-situ root extent measurements by electrical capacitance methods , 1995, Plant and Soil.

[78]  Alan G. Green,et al.  Experimental design: Electrical resistivity data sets that provide optimum subsurface information , 2004 .

[79]  J. Abe Roots: The Dynamic Interface between Plants and the Earth , 2003, Developments in Plant and Soil Sciences.

[80]  D. Rowell Solute Movement in the Rhizosphere , 2001 .

[81]  P. B. Tinker,et al.  Solute Movement in the Rhizosphere , 2000 .

[82]  E. Steudle,et al.  Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. , 2000, Journal of experimental botany.

[83]  H. Jones Physicochemical and Environmental Plant Physiology, 2nd edn. , 1999 .

[84]  Yermiyahu,et al.  Computation of surface electrical potentials of plant cell membranes . Correspondence To published zeta potentials from diverse plant sources , 1998, Plant physiology.

[85]  Susan J. Smith,et al.  Remobilisation of vacuolar stored nitrate in barley root cells , 1998, Planta.

[86]  R. Parsons Fundamentals of interface and colloid science, volume II. Solid-liquid interfaces , 1997 .

[87]  W. Daily,et al.  The effects of noise on Occam's inversion of resistivity tomography data , 1996 .

[88]  P. Tillard,et al.  Diurnal regulation of NO3− uptake in soybean plants I. Changes in NO3− influx, efflux, and N utilization in the plant during the day/night cycle , 1995 .

[89]  Peter A. Goode,et al.  Influence of temperature on electrical conductivity on shaly sands , 1992 .

[90]  Park S. Nobel,et al.  Physicochemical and Environmental Plant Physiology , 1991 .

[91]  L. P. Geldart,et al.  Applied Geophysics: Contents , 1990 .

[92]  Peter J. Shouse,et al.  Soil Electrical Conductivity and Soil Salinity: New Formulations and Calibrations , 1989 .

[93]  G. Bačić,et al.  NMR Studies of Radial Exchange and Distribution of Water in Maize Roots: The Relevance of Modelling of Exchange Kinetics , 1987 .

[94]  S. Dukhin,et al.  The relaxation of the double layer around Colloidal particles and the low-frequency dielectriec dispersion. I. Theoretical considerations , 1983 .

[95]  Stanley H. Ward,et al.  Mineral discrimination and removal of inductive coupling with multifrequency IP , 1978 .

[96]  G. M. Habberjam Principles of induced polarisation for geophysical exploration (Developments in Economic Geology, 5), J. S. Sumner Elsevier Scientific Publishing Company USs28.95 Dfl 70.00 , 1977 .

[97]  John S. Sumner,et al.  Principles of induced polarization for geophysical exploration , 1976 .

[98]  P. Kramer,et al.  Diurnal Cycling in Root Resistance to Water Movement , 1974 .

[99]  J. Michael Schurr On the Theory of the Dielectric Dispersion of Spherical Colloidal Particles in Electrolyte Solution1 , 1964 .

[100]  G. Schwarz A THEORY OF THE LOW-FREQUENCY DIELECTRIC DISPERSION OF COLLOIDAL PARTICLES IN ELECTROLYTE SOLUTION1,2 , 1962 .

[101]  H. Schwan Electrical properties of tissue and cell suspensions. , 1957, Advances in biological and medical physics.

[102]  G. E. Archie The electrical resistivity log as an aid in determining some reservoir characteristics , 1942 .