Environmental impacts of future low-carbon electricity systems: Detailed life cycle assessment of a Danish case study

[1]  I. Dincer The role of exergy in energy policy making , 2002 .

[2]  William D'haeseleer,et al.  Impact of large amounts of wind power on the operation of an electricity generation system: Belgian case study , 2010 .

[3]  Davide Tonini,et al.  LCA of biomass-based energy systems: A case study for Denmark , 2012 .

[4]  Aie Energy Policies of IEA Countries: Germany 2007 , 2007 .

[5]  L. Hamelin,et al.  Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy--a life cycle perspective. , 2012, Bioresource technology.

[6]  Brian Vad Mathiesen,et al.  Integrated transport and renewable energy systems , 2008 .

[7]  S. Humbert Geographically Differentiated Life-cycle Impact Assessment of Human Health , 2009 .

[8]  Mary Ann Curran,et al.  The international workshop on electricity data for life cycle inventories , 2005 .

[9]  Brian Vad Mathiesen,et al.  Energy system analysis of 100% renewable energy systems-The case of Denmark in years 2030 and 2050 , 2009 .

[10]  Tim Cockerill,et al.  Life cycle analysis of UK coal fired power plants , 2008 .

[11]  Jacinto F. Fabiosa,et al.  Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change , 2008, Science.

[12]  Roberto Dones,et al.  Life Cycle Assessment for Emerging Technologies: Case Studies for Photovoltaic and Wind Power (11 pp) , 2005 .

[13]  Scott W. White,et al.  Birth to death analysis of the energy payback ratio and CO2 gas emission rates from coal, fission, wind, and DT-fusion electrical power plants , 2000 .

[14]  Not Indicated,et al.  International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance , 2010 .

[15]  Anders Damgaard,et al.  An environmental assessment system for environmental technologies , 2014, Environ. Model. Softw..

[16]  Martin Pehnt,et al.  Assessing future energy and transport systems: the case of fuel cells , 2003 .

[17]  Francesco Cherubini,et al.  Crop residues as raw materials for biorefinery systems - A LCA case study , 2010 .

[18]  Gui-Bing Hong,et al.  Energy conservation status in Taiwanese food industry , 2012 .

[19]  T. Nemecek,et al.  Life Cycle Inventories of Agricultural Production Systems , 2007 .

[20]  Hiroki Hondo,et al.  Life cycle GHG emission analysis of power generation systems: Japanese case , 2005 .

[21]  David Connolly,et al.  The first step towards a 100% renewable energy-system for Ireland , 2011 .

[22]  Amitava Datta,et al.  Exergy analysis of a coal‐based 210 MW thermal power plant , 2007 .

[23]  Stijn Bruers,et al.  Exergy: its potential and limitations in environmental science and technology. , 2008, Environmental science & technology.

[24]  Danièle Revel,et al.  IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation , 2011 .

[25]  E. Hertwich,et al.  Environmental implications of large-scale adoption of wind power: a scenario-based life cycle assessment , 2011 .

[26]  Hannele Holttinen,et al.  The effect of wind power on CO2 abatement in the Nordic Countries , 2004 .

[27]  Michael Zwicky Hauschild Evaluation of Ecotoxicity Effect Indicators for Use in LCIA (10+4 pp) , 2007 .

[28]  G. Lewis,et al.  Life cycle greenhouse gas emissions of electricity generation in the province of Ontario, Canada , 2013, The International Journal of Life Cycle Assessment.

[29]  Lorie Hamelin,et al.  Carbon management and environmental consequences of agricultural biomass in a Danish Renewable Energy strategy , 2013 .

[30]  Hyung Chul Kim,et al.  Life Cycle Inventories and Life Cycle Assessments of Photovoltaic Systems , 2015 .

[31]  Jeroen B. Guinee,et al.  Handbook on life cycle assessment operational guide to the ISO standards , 2002 .

[32]  Roberto Dones,et al.  Life Cycle Inventories of Energy Systems: Results for Current Systems in Switzerland and other UCTE Countries , 2007 .

[33]  Thomas H Christensen,et al.  Greenhouse gas accounting and waste management , 2009, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[34]  Xuanwei Zhang,et al.  Study on Environmental Tax: A Case of China , 2010, Int. J. Asian Bus. Inf. Manag..

[35]  H. Wenzel,et al.  Bioenergy production from perennial energy crops: a consequential LCA of 12 bioenergy scenarios including land use changes. , 2012, Environmental science & technology.

[36]  A. Doldersum,et al.  Exergy analysis proves viability of process modifications , 1998 .

[37]  Ibrahim Dincer,et al.  Role of exergy in increasing efficiency and sustainability and reducing environmental impact , 2008 .

[38]  Martin Pehnt,et al.  Consequential environmental system analysis of expected offshore wind electricity production in Germany , 2008 .

[39]  Audun Botterud,et al.  System-wide emissions implications of increased wind power penetration. , 2012, Environmental science & technology.

[40]  B. M. Petersen,et al.  An approach to include soil carbon changes in life cycle assessments , 2013 .

[41]  Rolf Frischknecht,et al.  Life Cycle Inventories of Electrici- ty Mixes and Grid , 2014 .

[42]  Roberto Turconi,et al.  Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations , 2013 .

[43]  Damian Flynn,et al.  Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: Life cycle assessment for Ireland , 2014 .

[44]  Lyn Denison,et al.  Stockholm Convention on Persistent Organic Pollutants , 2013 .

[45]  R. Ion,et al.  Environmental Risk In Romanian Vineyards , 2010 .

[46]  Yohji Uchiyama,et al.  Life-cycle assessment of electricity generation options: The status of research in year 2001 , 2002 .

[47]  Hongguang Jin,et al.  Exergy analysis of coal-based polygeneration system for power and chemical production , 2004 .

[48]  Roberto Turconi,et al.  Life cycle assessment of the Danish electricity distribution network , 2013, The International Journal of Life Cycle Assessment.

[49]  T. Fruergaard,et al.  Energy use and recovery in waste management and implications for accounting of greenhouse gases and global warming contributions , 2009, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[50]  Miguel Brandão,et al.  LCA screening of biofuels: iLUC, biomass manipulation and soil carbon , 2013 .

[51]  Aie Energy Statistics of OECD Countries 2013 , 2013 .

[52]  Hans-Jürgen Dr. Klüppel,et al.  The Revision of ISO Standards 14040-3 - ISO 14040: Environmental management – Life cycle assessment – Principles and framework - ISO 14044: Environmental management – Life cycle assessment – Requirements and guidelines , 2005 .

[53]  P. Nielsen,et al.  Life cycle inventory modelling of land use induced by crop consumption , 2008 .

[54]  F. M. Andersen,et al.  Coherent Energy and Environmental System Analysis , 2011 .

[55]  Jürgen Reinhard,et al.  A Model of Indirect Land Use Change , 2012 .

[56]  Mark A. J. Huijbregts,et al.  USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment , 2008 .

[57]  A. O. Miguelanez,et al.  Corinair. Technical annexes. Vol. 2: Default emission factors handbook , 1995 .

[58]  H. Wenzel,et al.  Environmental consequences of different carbon alternatives for increased manure-based biogas , 2014 .

[59]  Manfred Lenzen,et al.  Life cycle energy and greenhouse gas emissions of nuclear energy: A review , 2008 .

[60]  Rafael Reuveny,et al.  The effect of warfare on the environment , 2010 .

[61]  B. Mathiesen,et al.  100% Renewable energy systems, climate mitigation and economic growth , 2011 .

[62]  Henrik Lund,et al.  Large-scale integration of wind power into different energy systems , 2005 .

[63]  Margni Manuele,et al.  Recommendations for Life Cycle Impact Assessment in the European context - based on existing environmental impact assessment models and factors (International Reference Life Cycle Data System - ILCD handbook) , 2011 .

[64]  Henrik Wenzel,et al.  Life cycle inventory modelling of land use induced by crop consumption , 2007 .

[65]  Bo Sander,et al.  Properties of Danish biofuels and the requirements for power production , 1997 .

[66]  M.A. Rosen,et al.  An Exergy-Based Method for Allocating Carbon Dioxide Emissions from Cogeneration Systems - Part I: Comparison with Other Methods , 2006, 2006 IEEE EIC Climate Change Conference.