Quantifying the effect of hydride microstructure on zirconium alloys embrittlement using image analysis
暂无分享,去创建一个
[1] A. Bind,et al. Effect of radial hydride on delayed hydride cracking behaviour of Zr-2.5Nb pressure tube material , 2020 .
[2] M. Tonks,et al. Development and application of a microstructure dependent thermal resistor model for UO2 reactor fuel with high thermal conductivity additives , 2020 .
[3] A. Zieliński,et al. Hydrogen Embrittlement and Oxide Layer Effect in the Cathodically Charged Zircaloy-2 , 2020, Materials.
[4] B. Wirth,et al. Hydrogen in zirconium alloys: A review , 2019, Journal of Nuclear Materials.
[5] A. Motta,et al. Experimental determination of zirconium hydride precipitation and dissolution in zirconium alloy , 2018, Journal of Nuclear Materials.
[6] B. P. Kashyap,et al. Effect of radial hydride fraction on fracture toughness of CWSR Zr-2.5%Nb pressure tube material between ambient and 300 °C temperatures , 2018, Journal of Nuclear Materials.
[7] M. Balooch,et al. Nanoindentation study of bulk zirconium hydrides at elevated temperatures , 2017 .
[8] Kyu-Tae Kim,et al. The effect of neutron irradiation on hydride reorientation and mechanical property degradation of zirconium alloy cladding , 2017 .
[9] A. Motta,et al. The influence of stress state on the reorientation of hydrides in a zirconium alloy , 2016 .
[10] D. Drouan,et al. Embrittlement of pre-hydrided Zircaloy-4 by steam oxidation under simulated LOCA transients , 2016 .
[11] Kyu-Tae Kim,et al. Tensile hoop stress-, hydrogen content- and cooling rate-dependent hydride reorientation behaviors of Zr alloy cladding tubes , 2015 .
[12] J. Bertsch,et al. Hydrides reorientation investigation of high burn-up PWR fuel cladding , 2015 .
[13] Taehoon Kim,et al. Effects of hydride morphology on the embrittlement of Zircaloy-4 cladding , 2015 .
[14] M. Daymond,et al. Mechanisms of Hydride Reorientation in Zircaloy-4 Studied in Situ , 2015 .
[15] M. Billone,et al. Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding , 2014 .
[16] M. Chiang,et al. The influence of hydride on fracture toughness of recrystallized Zircaloy-4 cladding , 2014 .
[17] M. Daymond,et al. Effect of thermo-mechanical cycling on zirconium hydride reorientation studied in situ with synchrotron X-ray diffraction , 2013 .
[18] M. Bornert,et al. 4204 - EXPERIMENTAL INVESTIGATION OF STRAIN, DAMAGE AND FAILURE OF HYDRIDED ZIRCONIUM ALLOYS WITH VARIOUS HYDRIDE ORIENTATIONS , 2013 .
[19] Michael C. Billone,et al. Ductile-to-Brittle transition temperature for high-burnup cladding alloys exposed to simulated drying-storage conditions , 2013 .
[20] K. Colas. Fundamental Experiments on Hydride Reorientation in Zircaloy , 2012 .
[21] A. Motta,et al. Crack growth in the through-thickness direction of hydrided thin-wall Zircaloy sheet , 2012 .
[22] L. Tsay,et al. Effect of hydride orientation on fracture toughness of Zircaloy-4 cladding , 2011 .
[23] M. Daymond,et al. In situ study of hydride precipitation kinetics and re-orientation in Zircaloy using synchrotron radiation , 2010 .
[24] R. Kuo,et al. Hydride reorientation in Zircaloy-4 cladding , 2008 .
[25] C. Hellwig,et al. Cladding Tube Deformation Test for Stress Reorientation of Hydrides , 2008 .
[26] R. Kuo,et al. Effect of radial hydrides on the axial and hoop mechanical properties of Zircaloy-4 cladding , 2007 .
[27] Hsiao-Hung Hsu. An evaluation of hydrided Zircaloy-4 cladding fracture behavior by X-specimen test , 2006 .
[28] Saurin Majumdar,et al. Radial-hydride Embrittlement of High-burnup Zircaloy-4 Fuel Cladding , 2006 .
[29] G. Meyer,et al. Influence of the crack-tip hydride concentration on the fracture toughness of Zircaloy-4 , 2006 .
[30] A. Racine. Influence de l'orientation des hydrures sur les modes de déformation, d'endommagement et de rupture du Zircaloy-4 hydruré. , 2005 .
[31] Callaghan,et al. Measurement of fracture toughness of hydrided Zircaloy - 4 , 2004 .
[32] J. E. Perez Ipiña,et al. In situ crack growth observation and fracture toughness measurement of hydrogen charged Zircaloy-4 , 2003 .
[33] K. Chan,et al. The influence of hydride blisters on the fracture of Zircaloy-4 , 2003 .
[34] G. Meyer,et al. Effects of hydrogen content and temperature on fracture toughness of Zircaloy-4 , 2003 .
[35] S. Wadekar,et al. Assessment of hydrogen embrittlement of Zircaloy-2 pressure tubes using unloading compliance and load normalization techniques for determining J–R curves , 1999 .
[36] V. Grigoriev,et al. Fracture toughness of Zircaloy cladding tubes , 1996 .
[37] C. Prioul,et al. Hydride embrittlement in ZIRCALOY-4 plate: Part II. interaction between the tensile stress and the hydride morphology , 1994 .
[38] G. Shek,et al. Effects of Hydride Morphology on Zr-2.5Nb Fracture Toughness , 1989 .
[39] P. Davies,et al. Fracture Toughness Testing of Zircaloy-2 Pressure Tube Material with Radial Hydrides Using Direct-Current Potential Drop , 1986 .
[40] Shun-ichi Honda,et al. Fracture toughness of Zr-2.5 wt% Nb pressure tubes , 1984 .
[41] C. Cann,et al. Fracture toughness of zirconium hydride and its influence on the crack resistance of zirconium alloys , 1979 .
[42] D. Hardie,et al. Stress reorientation of hydrides in zirconium--2.5% niobium , 1975 .
[43] T. Walker. Characterization of the Fracture Toughness of Zircaloy , 1971 .
[44] C. Ells. Hydride precipitates in zirconium alloys (A review) , 1968 .
[45] R. P. Marshall. Influence of fabrication history on stress-oriented hydrides in zircaloy tubing , 1967 .
[46] J. J. Kearns. TERMINAL SOLUBILITY AND PARTITIONING OF HYDROGEN IN THE ALPHA PHASE OF ZIRCONIUM, ZIRCALOY-2, AND ZIRCALOY-4. , 1967 .
[47] G. D. Fearnehough,et al. The effect of hydrogen and strain rate on the ``ductile-brittle'' behaviour of zircaloy , 1967 .
[48] R. P. Marshall,et al. Control of hydride orientation in zircaloy , 1963 .