Quantifying the effect of hydride microstructure on zirconium alloys embrittlement using image analysis

[1]  A. Bind,et al.  Effect of radial hydride on delayed hydride cracking behaviour of Zr-2.5Nb pressure tube material , 2020 .

[2]  M. Tonks,et al.  Development and application of a microstructure dependent thermal resistor model for UO2 reactor fuel with high thermal conductivity additives , 2020 .

[3]  A. Zieliński,et al.  Hydrogen Embrittlement and Oxide Layer Effect in the Cathodically Charged Zircaloy-2 , 2020, Materials.

[4]  B. Wirth,et al.  Hydrogen in zirconium alloys: A review , 2019, Journal of Nuclear Materials.

[5]  A. Motta,et al.  Experimental determination of zirconium hydride precipitation and dissolution in zirconium alloy , 2018, Journal of Nuclear Materials.

[6]  B. P. Kashyap,et al.  Effect of radial hydride fraction on fracture toughness of CWSR Zr-2.5%Nb pressure tube material between ambient and 300 °C temperatures , 2018, Journal of Nuclear Materials.

[7]  M. Balooch,et al.  Nanoindentation study of bulk zirconium hydrides at elevated temperatures , 2017 .

[8]  Kyu-Tae Kim,et al.  The effect of neutron irradiation on hydride reorientation and mechanical property degradation of zirconium alloy cladding , 2017 .

[9]  A. Motta,et al.  The influence of stress state on the reorientation of hydrides in a zirconium alloy , 2016 .

[10]  D. Drouan,et al.  Embrittlement of pre-hydrided Zircaloy-4 by steam oxidation under simulated LOCA transients , 2016 .

[11]  Kyu-Tae Kim,et al.  Tensile hoop stress-, hydrogen content- and cooling rate-dependent hydride reorientation behaviors of Zr alloy cladding tubes , 2015 .

[12]  J. Bertsch,et al.  Hydrides reorientation investigation of high burn-up PWR fuel cladding , 2015 .

[13]  Taehoon Kim,et al.  Effects of hydride morphology on the embrittlement of Zircaloy-4 cladding , 2015 .

[14]  M. Daymond,et al.  Mechanisms of Hydride Reorientation in Zircaloy-4 Studied in Situ , 2015 .

[15]  M. Billone,et al.  Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding , 2014 .

[16]  M. Chiang,et al.  The influence of hydride on fracture toughness of recrystallized Zircaloy-4 cladding , 2014 .

[17]  M. Daymond,et al.  Effect of thermo-mechanical cycling on zirconium hydride reorientation studied in situ with synchrotron X-ray diffraction , 2013 .

[18]  M. Bornert,et al.  4204 - EXPERIMENTAL INVESTIGATION OF STRAIN, DAMAGE AND FAILURE OF HYDRIDED ZIRCONIUM ALLOYS WITH VARIOUS HYDRIDE ORIENTATIONS , 2013 .

[19]  Michael C. Billone,et al.  Ductile-to-Brittle transition temperature for high-burnup cladding alloys exposed to simulated drying-storage conditions , 2013 .

[20]  K. Colas Fundamental Experiments on Hydride Reorientation in Zircaloy , 2012 .

[21]  A. Motta,et al.  Crack growth in the through-thickness direction of hydrided thin-wall Zircaloy sheet , 2012 .

[22]  L. Tsay,et al.  Effect of hydride orientation on fracture toughness of Zircaloy-4 cladding , 2011 .

[23]  M. Daymond,et al.  In situ study of hydride precipitation kinetics and re-orientation in Zircaloy using synchrotron radiation , 2010 .

[24]  R. Kuo,et al.  Hydride reorientation in Zircaloy-4 cladding , 2008 .

[25]  C. Hellwig,et al.  Cladding Tube Deformation Test for Stress Reorientation of Hydrides , 2008 .

[26]  R. Kuo,et al.  Effect of radial hydrides on the axial and hoop mechanical properties of Zircaloy-4 cladding , 2007 .

[27]  Hsiao-Hung Hsu An evaluation of hydrided Zircaloy-4 cladding fracture behavior by X-specimen test , 2006 .

[28]  Saurin Majumdar,et al.  Radial-hydride Embrittlement of High-burnup Zircaloy-4 Fuel Cladding , 2006 .

[29]  G. Meyer,et al.  Influence of the crack-tip hydride concentration on the fracture toughness of Zircaloy-4 , 2006 .

[30]  A. Racine Influence de l'orientation des hydrures sur les modes de déformation, d'endommagement et de rupture du Zircaloy-4 hydruré. , 2005 .

[31]  Callaghan,et al.  Measurement of fracture toughness of hydrided Zircaloy - 4 , 2004 .

[32]  J. E. Perez Ipiña,et al.  In situ crack growth observation and fracture toughness measurement of hydrogen charged Zircaloy-4 , 2003 .

[33]  K. Chan,et al.  The influence of hydride blisters on the fracture of Zircaloy-4 , 2003 .

[34]  G. Meyer,et al.  Effects of hydrogen content and temperature on fracture toughness of Zircaloy-4 , 2003 .

[35]  S. Wadekar,et al.  Assessment of hydrogen embrittlement of Zircaloy-2 pressure tubes using unloading compliance and load normalization techniques for determining J–R curves , 1999 .

[36]  V. Grigoriev,et al.  Fracture toughness of Zircaloy cladding tubes , 1996 .

[37]  C. Prioul,et al.  Hydride embrittlement in ZIRCALOY-4 plate: Part II. interaction between the tensile stress and the hydride morphology , 1994 .

[38]  G. Shek,et al.  Effects of Hydride Morphology on Zr-2.5Nb Fracture Toughness , 1989 .

[39]  P. Davies,et al.  Fracture Toughness Testing of Zircaloy-2 Pressure Tube Material with Radial Hydrides Using Direct-Current Potential Drop , 1986 .

[40]  Shun-ichi Honda,et al.  Fracture toughness of Zr-2.5 wt% Nb pressure tubes , 1984 .

[41]  C. Cann,et al.  Fracture toughness of zirconium hydride and its influence on the crack resistance of zirconium alloys , 1979 .

[42]  D. Hardie,et al.  Stress reorientation of hydrides in zirconium--2.5% niobium , 1975 .

[43]  T. Walker Characterization of the Fracture Toughness of Zircaloy , 1971 .

[44]  C. Ells Hydride precipitates in zirconium alloys (A review) , 1968 .

[45]  R. P. Marshall Influence of fabrication history on stress-oriented hydrides in zircaloy tubing , 1967 .

[46]  J. J. Kearns TERMINAL SOLUBILITY AND PARTITIONING OF HYDROGEN IN THE ALPHA PHASE OF ZIRCONIUM, ZIRCALOY-2, AND ZIRCALOY-4. , 1967 .

[47]  G. D. Fearnehough,et al.  The effect of hydrogen and strain rate on the ``ductile-brittle'' behaviour of zircaloy , 1967 .

[48]  R. P. Marshall,et al.  Control of hydride orientation in zircaloy , 1963 .