On topological aspects of orientations

Abstract We are concerned with two classes of planar graphs: maximal planar graphs (i.e. polyhedral graphs, triangulations) and maximal bipartite planar graphs (i.e. bipartite planar graphs with quadrilateral faces). For these graphs we consider constrained orientations with a constant indegree for the internal vertex set. We recall or prove new fundamental relations between these orientations, specific tree decompositions and bipolar orientations. In particular, these relations yield linear time computation algorithms. Using these orientations, we give a characterization of 4-connected maximal planar graphs and 3-connected planar graphs, which leads to simple linear time algorithms (de Fraysseix, Ossona de Mendez, Dagasthul Seminar Proceedings, Submitted for Publication).

[1]  Michel Las Vergnas,et al.  Acyclic and totally cyclic orientations of combinatorial geometries , 1977, Discret. Math..

[2]  Georges Bensoussan,et al.  École des Hautes Études en Sciences Sociales,Colloque 1982, L'Allemagne nazie et le génocide juif, Coll. Hautes études, 1985 , 1987 .

[3]  Vojislav Petrovic Decomposition of some planar graphs into trees , 1996, Discret. Math..

[4]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[5]  W. Schnyder Planar graphs and poset dimension , 1989 .

[6]  Patrice Ossona de Mendez,et al.  Planarity and Edge Poset Dimension , 1996, Eur. J. Comb..

[7]  Patrice Ossona de Mendez,et al.  Bipolar orientations Revisited , 1995, Discret. Appl. Math..

[8]  János Pach,et al.  Small sets supporting fary embeddings of planar graphs , 1988, STOC '88.

[9]  Gerhard Ringel Two trees in maximal planar bipartite graphs , 1993, J. Graph Theory.

[10]  G. Kant Algorithms for drawing planar graphs , 1993 .

[11]  C. Nash-Williams Edge-disjoint spanning trees of finite graphs , 1961 .

[12]  Patrice Ossona de Mendez,et al.  On Triangle Contact Graphs , 1994, Combinatorics, Probability and Computing.

[13]  Patrice Ossona de Mendez,et al.  A left-first search algorithm for planar graphs , 1995, Discret. Comput. Geom..

[14]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[15]  Robert E. Tarjan,et al.  Computing an st -Numbering , 1976, Theor. Comput. Sci..

[16]  René Weiskircher,et al.  Drawing Planar Graphs , 2001, Drawing Graphs.

[17]  C. Nash-Williams Decomposition of Finite Graphs Into Forests , 1964 .