Laser ablation and micromachining with ultrashort laser pulses

The mechanisms of ultrashort-pulse laser ablation of materials are discussed, and the differences to that of long laser pulses are emphasized. Ultrashort laser pulses offer both high laser intensity and precise laser-induced breakdown threshold with reduced laser fluence. The ablation of materials with ultrashort pulses has a very limited heat-affected volume. The advantages of ultrashort laser pulses are applied in precision micromachining of various materials. Some femtosecond laser pulse micromachining results, including comparison with long pulses, are presented. Ultrashort-pulse laser micromachining may have a wide range of applications where micrometer and submicrometer feature sizes are required.

[1]  G. Holleman,et al.  Diode‐pumped Nd:YAG laser for precision laser machining , 1996 .

[2]  K Bergman,et al.  Saturable Bragg reflector self-starting passive mode locking of a Cr(4+):YAG laser pumped with a diode-pumped Nd:YVO(4) laser. , 1996, Optics letters.

[3]  Boris N. Chichkov,et al.  Short-pulse laser ablation of solid targets , 1996 .

[4]  A. Tünnermann,et al.  Femtosecond, picosecond and nanosecond laser ablation of solids , 1996 .

[5]  G. Mourou,et al.  Diode-pumped Nd:glass kHz regenerative amplifier for subpicosecond microjoule level pulse , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[6]  G. Mourou,et al.  Laser micromachining with ultrafast pulses , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[7]  Bruce W. Shore,et al.  Unique aspects of laser energy deposition in the fs pulse regime , 1996, Photonics West.

[8]  K. Midorikawa,et al.  Effect of Pulse Duration on Ablation Characteristics of Tetrafluoroethylene-hexafluoropropylene Copolymer Film Using Ti:sapphire Laser , 1996 .

[9]  F. Krausz,et al.  Chirped dielectric mirrors improve Ti:sapphire lasers , 1995 .

[10]  Gerard Mourou,et al.  Laser-induced breakdown as a function of pulse duration: from 7 ns to 150 fs , 1995, Laser Damage.

[11]  F. Kärtner,et al.  Diode-pumped mode-locked Nd:glass lasers with an antiresonant Fabry-Perot saturable absorber. , 1995, Optics letters.

[12]  Perry,et al.  Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. , 1995, Physical review letters.

[13]  Gerard Mourou,et al.  Machining of sub-micron holes using a femtosecond laser at 800 nm , 1995 .

[14]  K. Midorikawa,et al.  Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm , 1994 .

[15]  Wolfgang Kautek,et al.  Femtosecond-Pulse Laser Microstructuring of Semiconducting Materials , 1994 .

[16]  F. Krausz,et al.  Chirped multilayer mirrors for dispersion control of femtosecond pulses , 1994, Conference on Lasers and Electro-Optics Europe.

[17]  Gerard Mourou,et al.  Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs , 1994 .

[18]  K. Midorikawa,et al.  Ablation of polyfluorocarbon films with femtosecond Ti:sapphire laser pulses , 1994 .

[19]  G Korn,et al.  Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti:Al2O3 regenerative amplifier. , 1993, Optics letters.

[20]  D. Miller,et al.  Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber. , 1992, Optics letters.

[21]  S. C. Jones,et al.  Recent Progress On Laser-Induced Modifications And Intrinsic Bulk Damage Of Wide-Gap Optical Materials , 1989 .

[22]  Hermann A. Haus,et al.  Additive pulse mode locking , 1989, Annual Meeting Optical Society of America.

[23]  Oscar E. Martínez,et al.  Design of high-power ultrashort pulse amplifiers by expansion and recompression , 1987 .

[24]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[25]  Gerard Mourou,et al.  Kilohertz synchronous amplification of 85-femtosecond optical pulses , 1985 .

[26]  James P. Gordon,et al.  Negative group-velocity dispersion using refraction , 1984 .

[27]  J. Gordon,et al.  Negative dispersion using pairs of prisms. , 1984, Optics letters.

[28]  Charles V. Shank,et al.  Compression of optical pulses chirped by self-phase modulation in fibers , 1984 .

[29]  R. Yen,et al.  Compression of femtosecond optical pulses , 1982 .

[30]  W. H. Lowdermilk,et al.  ND : YAG regenerative amplifier , 1980 .

[31]  W. L. Smith,et al.  Laser-Induced Breakdown In Optical Materials , 1978 .

[32]  N. Bloembergen,et al.  Laser-induced electric breakdown in solids , 1974 .

[33]  E. Treacy Optical pulse compression with diffraction gratings , 1969 .

[34]  E. Mazur,et al.  3-D Optical Storage and Engraving Inside Transparent Materials† , 1996, Ultrafast Phenomena.

[35]  G. Marowsky,et al.  Ablation of Si and Ge Using UV Femtosecond Laser Pulses , 1995 .

[36]  P. P. Pronko,et al.  Laser Induced Avalanche Ionization and Electron-Lattice Heating of Silicon with Intense Near IR Femtosecond Pulses , 1995 .

[37]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.