Compact Steep Spectrum Radio Sources with Enhanced Star Formation Are Smaller Than 10 kpc
暂无分享,去创建一个
K. Bechtol | S. Baum | Y. Gordon | C. O’Dea | P. Ferguson | Chetna Duggal | C. Duggal
[1] Y. Gordon,et al. Galaxy interactions are the dominant trigger for local type 2 quasars , 2023, Monthly Notices of the Royal Astronomical Society.
[2] Miguel de Val-Borro,et al. The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package , 2022, The Astrophysical Journal.
[3] R. Morganti,et al. Jet‐triggered star formation in young radio galaxies , 2021, Astronomische Nachrichten.
[4] K. Mooley,et al. Caltech-NRAO Stripe 82 Survey (CNSS). V. AGNs That Transitioned to Radio-loud State , 2021, The Astrophysical Journal.
[5] H. Andernach,et al. A Quick Look at the 3 GHz Radio Sky. I. Source Statistics from the Very Large Array Sky Survey , 2021, 2102.11753.
[6] Michael L. Waskom,et al. Seaborn: Statistical Data Visualization , 2021, J. Open Source Softw..
[7] A. Kimball,et al. Quasars That Have Transitioned from Radio-quiet to Radio-loud on Decadal Timescales Revealed by VLASS and FIRST , 2020, The Astrophysical Journal.
[8] D. J. Saikia,et al. Compact steep-spectrum and peaked-spectrum radio sources , 2020, 2009.02750.
[9] Jaime Fern'andez del R'io,et al. Array programming with NumPy , 2020, Nature.
[10] A. Hopkins,et al. Mergers Do Trigger AGNs out to z $\sim$ 0.6 , 2020, 2004.00680.
[11] T. Kitching,et al. ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository Effect of galaxy mergers on star-formation rates Effect of galaxy mergers on star-formation rates , 2022 .
[12] Joel Nothman,et al. SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.
[13] F. Schinzel,et al. The Karl G. Jansky Very Large Array Sky Survey (VLASS). Science Case and Survey Design , 2019, Publications of the Astronomical Society of the Pacific.
[14] Sugata Kaviraj,et al. The Effect of Minor and Major Mergers on the Evolution of Low-excitation Radio Galaxies , 2019, The Astrophysical Journal.
[15] R. Blandford,et al. Relativistic Jets in Active Galactic Nuclei , 2018, 1812.06025.
[16] Adam D. Myers,et al. Overview of the DESI Legacy Imaging Surveys , 2018, The Astronomical Journal.
[17] Miguel de Val-Borro,et al. The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.
[18] M. Hardcastle. A simulation-based analytic model of radio galaxies , 2018, 1801.00667.
[19] P. Padovani. On the two main classes of active galactic nuclei , 2017, Nature Astronomy.
[20] Somak Raychaudhury,et al. Discovery of giant radio galaxies from NVSS: radio and infrared properties , 2017, 1704.00516.
[21] S. Kaviraj,et al. Delayed triggering of radio Active Galactic Nuclei in gas-rich minor mergers in the local Universe , 2016, 1608.04178.
[22] F. J. Carrera,et al. The MIXR sample: AGN activity versus star formation across the cross-correlation of WISE, 3XMM, and FIRST/NVSS , 2016, 1607.06471.
[23] E. Sadler. GPS/CSS radio sources and their relation to other AGN , 2015, 1512.01851.
[24] D. A. Rafferty,et al. PyBDSF: Python Blob Detection and Source Finder , 2015 .
[25] Dominic J. Benford,et al. Explanatory Supplement to the AllWISE Data Release Products , 2013, WISE 2013.
[26] S. Ellison,et al. Galaxy pairs in the Sloan Digital Sky Survey – VIII. The observational properties of post-merger galaxies , 2013, 1308.3707.
[27] Prasanth H. Nair,et al. Astropy: A community Python package for astronomy , 2013, 1307.6212.
[28] T. Heckman,et al. On the fundamental dichotomy in the local radio-AGN population , 2012, 1201.2397.
[29] X. Hong,et al. VLBI OBSERVATIONS OF 10 COMPACT SYMMETRIC OBJECT CANDIDATES: EXPANSION VELOCITIES OF HOT SPOTS , 2011, 1111.3710.
[30] R. Morganti,et al. Starburst radio galaxies: general properties, evolutionary histories and triggering , 2010, 1011.2096.
[31] Martin G. Cohen,et al. THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.
[32] J. Silk,et al. Composite star formation histories of early-type galaxies from minor mergers: prospects for WFC3 , 2009, 0912.2629.
[33] G. W. Pratt,et al. The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.
[34] B. Skiff,et al. VizieR Online Data Catalog , 2009 .
[35] K. Abazajian,et al. THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.
[36] T. Goto,et al. Spatially resolved medium resolution spectroscopy of an interacting E+A (post-starburst) system with the Subaru Telescope , 2008, 0809.0891.
[37] P. Barthel,et al. Star formation in the hosts of GHz peaked spectrum and compact steep spectrum radio galaxies , 2007, astro-ph/0701619.
[38] Bologna,et al. Constraining the spectral age of very asymmetric CSOs Evidence of the influence of the ambient medium , 2006, astro-ph/0610359.
[39] D. Evans,et al. The X-ray nuclei of intermediate-redshift radio sources , 2006, astro-ph/0603090.
[40] R. Morganti,et al. Starbursts and the triggering of the activity in nearby powerful radio galaxies , 2004, astro-ph/0410108.
[41] M. Dopita,et al. Radio-Excess IRAS Galaxies. II. Host Galaxies , 2004 .
[42] E. Peeters,et al. PAHs as a tracer of star formation , 2004, astro-ph/0406183.
[43] J. Brinkmann,et al. The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.
[44] J. Brinkmann,et al. The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.
[45] D. J. Saikia,et al. Polarization asymmetry in CSS sources: Evidence of AGN fuel? , 2003, astro-ph/0304532.
[46] R. Nichol,et al. Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.
[47] M. Lehnert,et al. Hubble Space Telescope NICMOS Observations of the Host Galaxies of Powerful Radio Sources: Does Size Matter? , 2000, astro-ph/0007424.
[48] Walter A. Siegmund,et al. The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.
[49] D. J. Saikia,et al. Giant radio sources , 1999, astro-ph/9902252.
[50] M. Lehnert,et al. Hosts of Powerful Radio Galaxies in the Near-Infrared: Implications for Radio Source Evolution , 1998 .
[51] Jr.,et al. STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.
[52] C. O’Dea. The Compact Steep‐Spectrum and Gigahertz Peaked‐Spectrum Radio Sources , 1998 .
[53] D. J. Saikia,et al. Compact steep-spectrum radio sources and unification schemes , 1995 .
[54] Richard L. White,et al. The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .
[55] S. Baum,et al. What are the gigahertz peaked-spectrum radio sources ? , 1991 .
[56] R. Schilizzi,et al. High-resolution observations of eight 3CR compact steep-spectrum radio sources , 1991 .
[57] T. Cornwell,et al. Peculiar radio structure in the quasar 3C380 , 1984, Nature.
[58] R. Strom,et al. 3C236, DA240; the largest radio sources known , 1974, Nature.
[59] Edwin E. Salpeter,et al. Accretion of Interstellar Matter by Massive Objects. , 1964 .
[60] OUP accepted manuscript , 2021, Monthly Notices of the Royal Astronomical Society.
[61] Jean-Luc Starck,et al. Astronomical Data Analysis , 2007 .
[62] S. Baum,et al. Constraints on Radio Source Evolution from the Compact Steep Spectrum and GHz Peaked Spectrum Radio Sources , 1997 .
[63] W. V. Breugel,et al. Studies of kiloparsec-scale, steep-spectrum radio cores. I. VLA maps. , 1984 .