Compact Steep Spectrum Radio Sources with Enhanced Star Formation Are Smaller Than 10 kpc

Compact steep spectrum (CSS) radio sources are active galactic nuclei (AGN) that have radio jets propagating only on galactic scales, defined as having projected linear size (LS) of up to 20 kpc. CSS sources are generally hosted by massive early-type galaxies with little ongoing star formation; however, a small fraction are known to have enhanced star formation. Using archival data from the Faint Images of the Radio Sky at Twenty cm survey, the Very Large Array Sky Survey, and the Sloan Digital Sky Survey, we identify a volume-limited sample of 166 CSS sources at z < 0.2 with L 1.4 GHz > 1024 W Hz−1. Comparing the star formation rates and linear sizes of these CSS sources, we find that the ≈14% of CSS sources with specific star formation rates above 0.01 Gyr−1 all have LS < 10 kpc. We discuss the possible mechanisms driving this result, concluding that it is likely the excess star formation in these sources occurred in multiple bursts and ceased prior to the AGN jet being triggered.

[1]  Y. Gordon,et al.  Galaxy interactions are the dominant trigger for local type 2 quasars , 2023, Monthly Notices of the Royal Astronomical Society.

[2]  Miguel de Val-Borro,et al.  The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package , 2022, The Astrophysical Journal.

[3]  R. Morganti,et al.  Jet‐triggered star formation in young radio galaxies , 2021, Astronomische Nachrichten.

[4]  K. Mooley,et al.  Caltech-NRAO Stripe 82 Survey (CNSS). V. AGNs That Transitioned to Radio-loud State , 2021, The Astrophysical Journal.

[5]  H. Andernach,et al.  A Quick Look at the 3 GHz Radio Sky. I. Source Statistics from the Very Large Array Sky Survey , 2021, 2102.11753.

[6]  Michael L. Waskom,et al.  Seaborn: Statistical Data Visualization , 2021, J. Open Source Softw..

[7]  A. Kimball,et al.  Quasars That Have Transitioned from Radio-quiet to Radio-loud on Decadal Timescales Revealed by VLASS and FIRST , 2020, The Astrophysical Journal.

[8]  D. J. Saikia,et al.  Compact steep-spectrum and peaked-spectrum radio sources , 2020, 2009.02750.

[9]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[10]  A. Hopkins,et al.  Mergers Do Trigger AGNs out to z $\sim$ 0.6 , 2020, 2004.00680.

[11]  T. Kitching,et al.  ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository Effect of galaxy mergers on star-formation rates Effect of galaxy mergers on star-formation rates , 2022 .

[12]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[13]  F. Schinzel,et al.  The Karl G. Jansky Very Large Array Sky Survey (VLASS). Science Case and Survey Design , 2019, Publications of the Astronomical Society of the Pacific.

[14]  Sugata Kaviraj,et al.  The Effect of Minor and Major Mergers on the Evolution of Low-excitation Radio Galaxies , 2019, The Astrophysical Journal.

[15]  R. Blandford,et al.  Relativistic Jets in Active Galactic Nuclei , 2018, 1812.06025.

[16]  Adam D. Myers,et al.  Overview of the DESI Legacy Imaging Surveys , 2018, The Astronomical Journal.

[17]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[18]  M. Hardcastle A simulation-based analytic model of radio galaxies , 2018, 1801.00667.

[19]  P. Padovani On the two main classes of active galactic nuclei , 2017, Nature Astronomy.

[20]  Somak Raychaudhury,et al.  Discovery of giant radio galaxies from NVSS: radio and infrared properties , 2017, 1704.00516.

[21]  S. Kaviraj,et al.  Delayed triggering of radio Active Galactic Nuclei in gas-rich minor mergers in the local Universe , 2016, 1608.04178.

[22]  F. J. Carrera,et al.  The MIXR sample: AGN activity versus star formation across the cross-correlation of WISE, 3XMM, and FIRST/NVSS , 2016, 1607.06471.

[23]  E. Sadler GPS/CSS radio sources and their relation to other AGN , 2015, 1512.01851.

[24]  D. A. Rafferty,et al.  PyBDSF: Python Blob Detection and Source Finder , 2015 .

[25]  Dominic J. Benford,et al.  Explanatory Supplement to the AllWISE Data Release Products , 2013, WISE 2013.

[26]  S. Ellison,et al.  Galaxy pairs in the Sloan Digital Sky Survey – VIII. The observational properties of post-merger galaxies , 2013, 1308.3707.

[27]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[28]  T. Heckman,et al.  On the fundamental dichotomy in the local radio-AGN population , 2012, 1201.2397.

[29]  X. Hong,et al.  VLBI OBSERVATIONS OF 10 COMPACT SYMMETRIC OBJECT CANDIDATES: EXPANSION VELOCITIES OF HOT SPOTS , 2011, 1111.3710.

[30]  R. Morganti,et al.  Starburst radio galaxies: general properties, evolutionary histories and triggering , 2010, 1011.2096.

[31]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[32]  J. Silk,et al.  Composite star formation histories of early-type galaxies from minor mergers: prospects for WFC3 , 2009, 0912.2629.

[33]  G. W. Pratt,et al.  The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.

[34]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[35]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[36]  T. Goto,et al.  Spatially resolved medium resolution spectroscopy of an interacting E+A (post-starburst) system with the Subaru Telescope , 2008, 0809.0891.

[37]  P. Barthel,et al.  Star formation in the hosts of GHz peaked spectrum and compact steep spectrum radio galaxies , 2007, astro-ph/0701619.

[38]  Bologna,et al.  Constraining the spectral age of very asymmetric CSOs Evidence of the influence of the ambient medium , 2006, astro-ph/0610359.

[39]  D. Evans,et al.  The X-ray nuclei of intermediate-redshift radio sources , 2006, astro-ph/0603090.

[40]  R. Morganti,et al.  Starbursts and the triggering of the activity in nearby powerful radio galaxies , 2004, astro-ph/0410108.

[41]  M. Dopita,et al.  Radio-Excess IRAS Galaxies. II. Host Galaxies , 2004 .

[42]  E. Peeters,et al.  PAHs as a tracer of star formation , 2004, astro-ph/0406183.

[43]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[44]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[45]  D. J. Saikia,et al.  Polarization asymmetry in CSS sources: Evidence of AGN fuel? , 2003, astro-ph/0304532.

[46]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[47]  M. Lehnert,et al.  Hubble Space Telescope NICMOS Observations of the Host Galaxies of Powerful Radio Sources: Does Size Matter? , 2000, astro-ph/0007424.

[48]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[49]  D. J. Saikia,et al.  Giant radio sources , 1999, astro-ph/9902252.

[50]  M. Lehnert,et al.  Hosts of Powerful Radio Galaxies in the Near-Infrared: Implications for Radio Source Evolution , 1998 .

[51]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[52]  C. O’Dea The Compact Steep‐Spectrum and Gigahertz Peaked‐Spectrum Radio Sources , 1998 .

[53]  D. J. Saikia,et al.  Compact steep-spectrum radio sources and unification schemes , 1995 .

[54]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[55]  S. Baum,et al.  What are the gigahertz peaked-spectrum radio sources ? , 1991 .

[56]  R. Schilizzi,et al.  High-resolution observations of eight 3CR compact steep-spectrum radio sources , 1991 .

[57]  T. Cornwell,et al.  Peculiar radio structure in the quasar 3C380 , 1984, Nature.

[58]  R. Strom,et al.  3C236, DA240; the largest radio sources known , 1974, Nature.

[59]  Edwin E. Salpeter,et al.  Accretion of Interstellar Matter by Massive Objects. , 1964 .

[60]  OUP accepted manuscript , 2021, Monthly Notices of the Royal Astronomical Society.

[61]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[62]  S. Baum,et al.  Constraints on Radio Source Evolution from the Compact Steep Spectrum and GHz Peaked Spectrum Radio Sources , 1997 .

[63]  W. V. Breugel,et al.  Studies of kiloparsec-scale, steep-spectrum radio cores. I. VLA maps. , 1984 .