Marginalia on a Theorem of Woodin

[1]  Petr Hájek,et al.  Metamathematics of First-Order Arithmetic , 1993, Perspectives in mathematical logic.

[2]  Alexander Shen,et al.  Are random axioms useful? , 2011, ArXiv.

[3]  Paola D'Aquino,et al.  A Sharpened Version of McAloon's Theorem on Initial Segments of Models of I Delta0 , 1993, Ann. Pure Appl. Log..

[4]  David R. Bélanger WKL0 and induction principles in model theory , 2015, Ann. Pure Appl. Log..

[5]  James H. Schmerl,et al.  The Structure of Models of Peano Arithmetic , 2006 .

[6]  Saul A. Kripke “Flexible” predicates of formal number theory , 1962 .

[7]  D.H.J. de Jongh,et al.  The logic of the provability , 1998 .

[8]  Kenneth McAloon On the Complexity of Models of Arithmetic , 1982, J. Symb. Log..

[9]  Richard Kaye Models of Peano arithmetic , 1991, Oxford logic guides.

[10]  Craig Smorynski,et al.  Modal Logic and Self-Reference , 1989 .

[11]  Costas Dimitracopoulos,et al.  End Extensions of Models of Weak Arithmetic Theories , 2016, Notre Dame J. Formal Log..

[12]  Jeremy Avigad Formalizing Forcing Arguments in Subsystems of Second-Order Arithmetic , 1996, Ann. Pure Appl. Log..

[13]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[14]  Rineke Verbrugge,et al.  A small reflection principle for bounded arithmetic , 1994, Journal of Symbolic Logic.

[15]  Lev D. Beklemishev,et al.  On the limit existence principles in elementary arithmetic and Sigma n 0-consequences of theories , 2005, Ann. Pure Appl. Log..

[16]  Jeff B. Paris,et al.  A Note on a Theorem of H. FRIEDMAN , 1988, Math. Log. Q..

[17]  P. Griffith,et al.  A note on a theorem of Hill. , 1969 .

[18]  D. Guaspari,et al.  Partially conservative extensions of arithmetic , 1979 .

[19]  Per Lindström Aspects of Incompleteness , 2017, Lecture Notes in Logic.