Effect of multiple exciton generation on ultraviolet–visible absorption of Ag–Cu clusters: Ab initio study

[1]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[2]  Fedrigo,et al.  Collective dipole oscillations in small silver clusters embedded in rare-gas matrices. , 1993, Physical review. B, Condensed matter.

[3]  J. Koutecký,et al.  Effective core potential‐configuration interaction study of electronic structure and geometry of small neutral and cationic Agn clusters: Predictions and interpretation of measured properties , 1993 .

[4]  P. Siegbahn,et al.  Calculations of hydrogen chemisorption energies on optimized copper clusters , 1995 .

[5]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[6]  J. Heully,et al.  Structure, stability, and vibrational properties of small silver cluster , 1997 .

[7]  B. Delley From molecules to solids with the DMol3 approach , 2000 .

[8]  V. Spasov,et al.  Threshold collision-induced dissociation of anionic copper clusters and copper cluster monocarbonyls , 2000 .

[9]  R. Mitrić,et al.  Ab initio study of the absorption spectra of Agn (n=5–8) clusters , 2001 .

[10]  A. Nozik Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. , 2001, Annual review of physical chemistry.

[11]  R. Fournier Theoretical study of the structure of silver clusters , 2001 .

[12]  P. Calaminici,et al.  Structure and stability of small copper clusters , 2002 .

[13]  A. Toro‐Labbé,et al.  Characterization of copper clusters through the use of density functional theory reactivity descriptors , 2002 .

[14]  B. Delley Hardness conserving semilocal pseudopotentials , 2002 .

[15]  R. Schaller,et al.  High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. , 2004, Physical review letters.

[16]  Ab-initio Study of Small Silver Nanoclusters , 2004 .

[17]  K. Jackson,et al.  First-principles investigations of the polarizability of small-sized and intermediate-sized copper clusters. , 2005, The Journal of chemical physics.

[18]  R. Schaller,et al.  High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states , 2005 .

[19]  M. Beard,et al.  Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. , 2005, Nano letters.

[20]  S. Ogut,et al.  Size dependence of the static polarizabilities and absorption spectra of Agn (n=2-8) clusters , 2005 .

[21]  J. Soler,et al.  Trends in the structure and bonding of neutral and charged noble metal clusters , 2005 .

[22]  R. Schaller,et al.  Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions. , 2005, Physical review letters.

[23]  A. Zunger,et al.  Impact ionization can explain carrier multiplication in PbSe quantum dots. , 2006, Nano letters.

[24]  K. Yamashita,et al.  Ultrafast vibrationally-induced dephasing of electronic excitations in PbSe quantum dots. , 2006, Nano letters.

[25]  J. Chelikowsky,et al.  Real space pseudopotential calculations for copper clusters. , 2006, The Journal of chemical physics.

[26]  A. Nozik,et al.  Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers , 2006 .

[27]  S. Chu,et al.  Structures and charge distributions of cationic and neutral Cu n − 1 Ag clusters ( n = 2 – 8 ) , 2006 .

[28]  Jinlan Wang,et al.  Structural, Electronic, and Optical Properties of Noble Metal Clusters from First Principles , 2006 .

[29]  A. Nozik,et al.  Multiexciton generation by a single photon in nanocrystals. , 2006, Nano letters.

[30]  C. F. Craig,et al.  Ab Initio Time-Domain Study of Phonon-Assisted Relaxation of Charge Carriers in a PbSe Quantum Dot , 2007 .

[31]  R. Johnston,et al.  Structure and spectral characteristics of the nanoalloy Ag3Au10 , 2007 .

[32]  R. R. Cooney,et al.  Breaking the Phonon Bottleneck for Holes in Semiconductor Quantum Dots , 2007 .

[33]  Jijun Zhao,et al.  Structure and structural evolution of Agn (n = 3-22) clusters using a genetic algorithm and density functional theory method , 2007 .

[34]  R. Johnston,et al.  Nanoalloys: from theory to applications of alloy clusters and nanoparticles. , 2008, Chemical reviews.

[35]  M. Harb,et al.  Optical absorption of small silver clusters: Ag(n), (n=4-22). , 2008, The Journal of chemical physics.

[36]  C. Isborn,et al.  Generation of Multiple Excitons in PbSe and CdSe Quantum Dots by Direct Photoexcitation: First-Principles Calculations on Small PbSe and CdSe Clusters , 2008 .

[37]  R. Johnston,et al.  Charge transfer driven surface segregation of gold atoms in 13-atom Au–Ag nanoalloys and its relevance to their structural, optical and electronic properties , 2008 .

[38]  J. Jellinek Nanoalloys: tuning properties and characteristics through size and composition. , 2008, Faraday discussions.

[39]  S. Ogut,et al.  First Principles Absorption Spectra of Cu$_n$ ($n=1-10$) Clusters , 2009 .

[40]  E. Sargent,et al.  Colloidal Quantum-Dot Photodetectors Exploiting Multiexciton Generation , 2009, Science.

[41]  P. Guyot-Sionnest,et al.  Reduced damping of surface plasmons at low temperatures , 2009 .

[42]  Bradley F. Habenicht,et al.  Phonon-induced dephasing of excitons in semiconductor quantum dots: multiple exciton generation, fission, and luminescence. , 2009, ACS nano.

[43]  M. L. Tiago,et al.  Electronic and optical excitations in Agn clusters (n=1―8): Comparison of density-functional and many-body theories , 2009 .

[44]  D. Kilin,et al.  Breaking the phonon bottleneck in PbSe and CdSe quantum dots: time-domain density functional theory of charge carrier relaxation. , 2009, ACS nano.

[45]  M. Bonn,et al.  Carrier multiplication in bulk and nanocrystalline semiconductors: Mechanism, efficiency, and interest for solar cells , 2010 .

[46]  Bradley F. Habenicht,et al.  Ab initio study of phonon-induced dephasing of plasmon excitations in silver quantum dots , 2010 .

[47]  DFT study of the fragmentation channels and electronic properties of Cunν (ν= ±1,0,2; n=3-13) clusters , 2010 .

[48]  C. Isborn,et al.  Multiple Exciton Generation in Small Si Clusters: A High-Level, Ab Initio Study , 2010 .

[49]  R. Johnston,et al.  Structures and Chemical Ordering of Small Cu-Ag Clusters , 2010 .

[50]  B. Parkinson,et al.  Multiple Exciton Collection in a Sensitized Photovoltaic System , 2010, Science.

[51]  J. Luther,et al.  Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell , 2011, Science.

[52]  O. Prezhdo,et al.  Dopant Effects on Single and Multiple Excitons in Small Si Clusters: High-Level Ab Initio Calculations , 2011 .

[53]  S. Lecoultre,et al.  Optical absorption of small copper clusters in neon: Cu(n), (n = 1-9). , 2011, The Journal of chemical physics.

[54]  C. Mottet,et al.  Optical properties of pure and core-shell noble-metal nanoclusters from TDDFT: The influence of the atomic structure , 2011 .

[55]  S. Lecoultre,et al.  Ultraviolet-visible absorption of small silver clusters in neon: Ag(n) (n = 1-9). , 2011, The Journal of chemical physics.

[56]  O. Prezhdo,et al.  The role of surface defects in multi-exciton generation of lead selenide and silicon semiconductor quantum dots. , 2012, The Journal of chemical physics.

[57]  C. Aikens,et al.  Time-Dependent Density Functional Theory Studies of Optical Properties of Au Nanoparticles: Octahedra, Truncated Octahedra, and Icosahedra , 2012 .

[58]  T. Lian,et al.  Multiple exciton generation and dissociation in PbS quantum dot-electron acceptor complexes. , 2012, Nano letters.

[59]  C. Aikens,et al.  TDDFT and CIS studies of optical properties of dimers of silver tetrahedra. , 2012, The journal of physical chemistry. A.

[60]  Fuyi Chen,et al.  Optical and electronic properties of Cu doped Ag clusters , 2012 .

[61]  S. Pal,et al.  Ag7Au6: a 13-atom alloy quantum cluster. , 2012, Angewandte Chemie.

[62]  T. Tatsuma,et al.  Photoelectrochemical analysis of size-dependent electronic structures of gold clusters supported on TiO2. , 2012, Nanoscale.

[63]  X. Cui,et al.  Optical and magnetic properties of Cu-doped 13-atom Ag nanoclusters , 2013 .

[64]  A density functional theory study of structural, electronic, optical and magnetic properties of small Ag–Cu nanoalloys , 2013, Journal of Nanoparticle Research.

[65]  P. Kamat,et al.  Metal-cluster-sensitized solar cells. A new class of thiolated gold sensitizers delivering efficiency greater than 2%. , 2013, Journal of the American Chemical Society.

[66]  T. Tatsuma,et al.  Gold cluster-nanoparticle diad systems for plasmonic enhancement of photosensitization. , 2013, Nanoscale.

[67]  S. Gautam,et al.  CO2 adsorption and activation over medium sized Cun (n = 7, 13 and 19) clusters: A density functional study , 2013 .

[68]  T. Tatsuma,et al.  Photovoltaic properties of TiO2 loaded with glutathione-protected silver clusters. , 2013, Dalton transactions.

[69]  Fuyi Chen,et al.  Effect of Cu-doped site and charge on the optical and magnetic properties of 55-atom Ag cluster: A density functional theory study , 2014 .

[70]  Fuyi Chen,et al.  Optical, Raman and vibrational properties of closed shell Ag–Cu clusters from density functional theory: The influence of the atomic structure, exchange-correlation approximations and pseudopotentials , 2014 .

[71]  Fuyi Chen,et al.  Structural, electronic and optical properties of 7-atom Ag-Cu nanoclusters from density functional theory , 2014 .