Development of frequency domain multiplexing for the X-ray Integral Field unit (X-IFU) on the Athena
暂无分享,去创建一个
Stephen J. Smith | Simon R. Bandler | Cor P. de Vries | Brian D. Jackson | Caroline A. Kilbourne | A. J. van der Linden | Marcel P. Bruijn | Jan van der Kuur | James A. Chervenak | Joseph S. Adams | Luciano Gottardi | Mikko Kiviranta | Hiroki Akamatsu | Kevin Ravensberg | M. Kiviranta | C. Kilbourne | S. Smith | S. Bandler | H. Akamatsu | M. Bruijn | J. Chervenak | J. Adams | L. Gottardi | B. Jackson | J. van der Kuur | K. Ravensberg | C. D. de Vries
[1] Simon R. Bandler,et al. Proximity effects and nonequilibrium superconductivity in transition-edge sensors , 2011, 1108.4632.
[2] Joern Wilms,et al. The Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission , 2013 .
[3] Marcel P. Bruijn,et al. High-Q LC Filters for FDM Read out of Cryogenic Sensor Arrays , 2012 .
[4] S. R. Bandler,et al. Modeling of TES X-Ray Microcalorimeters with a Novel Absorber Design , 2008 .
[5] A. J. van der Linden,et al. Development of TES-based detectors array for the X-ray Integral Field Unit (X-IFU) on the future x-ray observatory ATHENA , 2014, Astronomical Telescopes and Instrumentation.
[6] Marcel P. Bruijn,et al. Baseband Feedback for Frequency‐Domain‐Multiplexed Readout of TES X‐ray Detectors , 2009 .
[7] Henk van Weers,et al. Development of the superconducting detectors and read-out for the X-IFU instrument on board of the X-ray observatory Athena , 2016, 1604.00670.
[8] H. Hoevers,et al. Single Pixel Characterization of X-Ray TES Microcalorimeter Under AC Bias at MHz Frequencies , 2013, IEEE Transactions on Applied Superconductivity.
[9] Jelle de Plaa,et al. The X-ray Integral Field Unit (X-IFU) for Athena , 2013, Astronomical Telescopes and Instrumentation.
[10] Pourya Khosropanah,et al. Josephson effects in an alternating current biased transition edge sensor , 2014 .
[11] M. P. Bruijn,et al. Nearly Quantum Limited Two-Stage SQUID Amplifiers for the Frequency Domain Multiplexing of TES Based X-ray and Infrared Detectors , 2015, IEEE Transactions on Applied Superconductivity.
[12] H. Hoevers,et al. Developments of Frequency-Domain Multiplexing of TES Arrays for a Future X-Ray Satellite Mission , 2015, IEEE Transactions on Applied Superconductivity.
[13] Stephen J. Smith,et al. Uniform high spectral resolution demonstrated in arrays of TES x-ray microcalorimeters , 2007, SPIE Optical Engineering + Applications.
[14] M. Kiviranta,et al. Performance of TES X-ray Microcalorimeters with AC Bias Read-Out at MHz Frequencies , 2014 .
[15] W. Cash,et al. Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .
[16] Simon R. Bandler,et al. TES-Based X-ray Microcalorimeter Performances Under AC Bias and FDM for Athena , 2016 .
[17] Simon R. Bandler,et al. Implications of weak-link behavior on the performance of Mo/Au bilayer transition-edge sensors , 2013 .
[18] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[19] S. Moseley,et al. Thermal detectors as X-ray spectrometers , 1984 .
[20] Brian D. Jackson,et al. Development of Ultra-Low-Noise TES Bolometer Arrays , 2016 .
[21] H. Hoevers,et al. Study of the Dependency on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter , 2012, Journal of low temperature physics.
[22] Norbert Meidinger,et al. The wide field imager instrument for Athena , 2014, Astronomical Telescopes and Instrumentation.