Article in Press G Model Journal of Neuroscience Methods Development and Validation of Consensus Clustering-based Framework for Brain Segmentation Using Resting Fmri

BACKGROUND Clustering methods are increasingly employed to segment brain regions into functional subdivisions using resting-state functional magnetic resonance imaging (rs-fMRI). However, these methods are highly sensitive to the (i) precise algorithms employed, (ii) their initializations, and (iii) metrics used for uncovering the optimal number of clusters from the data. NEW METHOD To address these issues, we develop a novel consensus clustering evidence accumulation (CC-EAC) framework, which effectively combines multiple clustering methods for segmenting brain regions using rs-fMRI data. Using extensive computer simulations, we examine the performance of widely used clustering algorithms including K-means, hierarchical, and spectral clustering as well as their combinations. We also examine the accuracy and validity of five objective criteria for determining the optimal number of clusters: mutual information, variation of information, modified silhouette, Rand index, and probabilistic Rand index. RESULTS A CC-EAC framework with a combination of base K-means clustering (KC) and hierarchical clustering (HC) with probabilistic Rand index as the criterion for choosing the optimal number of clusters, accurately uncovered the correct number of clusters from simulated datasets. In experimental rs-fMRI data, these methods reliably detected functional subdivisions of the supplementary motor area, insula, intraparietal sulcus, angular gyrus, and striatum. COMPARISON WITH EXISTING METHODS Unlike conventional approaches, CC-EAC can accurately determine the optimal number of stable clusters in rs-fMRI data, and is robust to initialization and choice of free parameters. CONCLUSIONS A novel CC-EAC framework is proposed for segmenting brain regions, by effectively combining multiple clustering methods and identifying optimal stable functional clusters in rs-fMRI data.

[1]  Scott T. Grafton,et al.  Cortical topography of human anterior intraparietal cortex active during visually guided grasping. , 2005, Brain research. Cognitive brain research.

[2]  K. Amunts,et al.  Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. , 2008, Cerebral cortex.

[3]  Michael P. Milham,et al.  A convergent functional architecture of the insula emerges across imaging modalities , 2012, NeuroImage.

[4]  P. Strick,et al.  Imaging the premotor areas , 2001, Current Opinion in Neurobiology.

[5]  Jonathan D. Power,et al.  Identifying Basal Ganglia Divisions in Individuals Using Resting-State Functional Connectivity MRI , 2010, Front. Syst. Neurosci..

[6]  Kaustubh Supekar,et al.  Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. , 2010, Cerebral cortex.

[7]  K. Amunts,et al.  The human inferior parietal lobule in stereotaxic space , 2008, Brain Structure and Function.

[8]  Remco J. Renken,et al.  Group analyses of connectivity-based cortical parcellation using repeated k-means clustering , 2009, NeuroImage.

[9]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.

[10]  Mark Jenkinson,et al.  A consistent relationship between local white matter architecture and functional specialisation in medial frontal cortex , 2006, NeuroImage.

[11]  Kaustubh Supekar,et al.  Dynamic Reconfiguration of Structural and Functional Connectivity Across Core Neurocognitive Brain Networks with Development , 2011, The Journal of Neuroscience.

[12]  M. Seghier The Angular Gyrus , 2013, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[13]  M. Petrides,et al.  Broca’s region: linking human brain functional connectivity data and non‐human primate tracing anatomy studies , 2010, The European journal of neuroscience.

[14]  Stephen M. Smith,et al.  Probabilistic independent component analysis for functional magnetic resonance imaging , 2004, IEEE Transactions on Medical Imaging.

[15]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  B. Biswal,et al.  Functional connectivity of human striatum: a resting state FMRI study. , 2008, Cerebral cortex.

[17]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[18]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[19]  Timothy Edward John Behrens,et al.  Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[21]  J. Ross Quinlan,et al.  Bagging, Boosting, and C4.5 , 1996, AAAI/IAAI, Vol. 1.

[22]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[23]  M. Fox,et al.  Noninvasive functional and structural connectivity mapping of the human thalamocortical system. , 2010, Cerebral cortex.

[24]  Damien A. Fair,et al.  Defining functional areas in individual human brains using resting functional connectivity MRI , 2008, NeuroImage.

[25]  Rainer Goebel,et al.  Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns , 2008, NeuroImage.

[26]  David G. Stork,et al.  Pattern Classification , 1973 .

[27]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[28]  Anil K. Jain,et al.  Clustering ensembles: models of consensus and weak partitions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Jonathan D. Power,et al.  Parcellation in left lateral parietal cortex is similar in adults and children. , 2012, Cerebral cortex.

[30]  M. Meilă Comparing clusterings---an information based distance , 2007 .

[31]  Timothy Edward John Behrens,et al.  Triangulating a Cognitive Control Network Using Diffusion-Weighted Magnetic Resonance Imaging (MRI) and Functional MRI , 2007, The Journal of Neuroscience.

[32]  Theiler,et al.  Generating surrogate data for time series with several simultaneously measured variables. , 1994, Physical review letters.

[33]  Danielle Posthuma,et al.  A longitudinal twin study on IQ, executive functioning, and attention problems during childhood and early adolescence. , 2006, Acta neurologica Belgica.

[34]  Katrin Amunts,et al.  The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability , 2006, NeuroImage.

[35]  J. Pekar,et al.  A method for making group inferences from functional MRI data using independent component analysis , 2001, Human brain mapping.

[36]  Luke J. Chang,et al.  Decoding the role of the insula in human cognition: functional parcellation and large-scale reverse inference. , 2013, Cerebral cortex.

[37]  P. Goldman-Rakic,et al.  Human Brain Mapping 6:14–32(1998) � Dissociation of Mnemonic and Perceptual Processes During Spatial and Nonspatial Working Memory Using fMRI , 2022 .

[38]  Joydeep Ghosh,et al.  Cluster Ensembles A Knowledge Reuse Framework for Combining Partitionings , 2002, AAAI/IAAI.

[39]  Timothy O. Laumann,et al.  Parcellating an Individual Subject's Cortical and Subcortical Brain Structures Using Snowball Sampling of Resting-State Correlations , 2013, Cerebral cortex.

[40]  E. Bullmore,et al.  Neurophysiological architecture of functional magnetic resonance images of human brain. , 2005, Cerebral cortex.

[41]  Timothy O. Laumann,et al.  An approach for parcellating human cortical areas using resting-state correlations , 2014, NeuroImage.

[42]  Paul M. Matthews,et al.  Functional segmentation of the hippocampus in the healthy human brain and in Alzheimer's disease , 2013, NeuroImage.

[43]  Sang Won Seo,et al.  Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: Functional connectivity-based parcellation method , 2010, NeuroImage.

[44]  V. Menon,et al.  Saliency, switching, attention and control: a network model of insula function , 2010, Brain Structure and Function.

[45]  Alan C. Evans,et al.  Multi-level bootstrap analysis of stable clusters in resting-state fMRI , 2009, NeuroImage.

[46]  Margot J. Taylor,et al.  Is 2+2=4? Meta-analyses of brain areas needed for numbers and calculations , 2011, NeuroImage.

[47]  Kaustubh Supekar,et al.  A parcellation scheme based on von Mises-Fisher distributions and Markov random fields for segmenting brain regions using resting-state fMRI , 2013, NeuroImage.

[48]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[49]  Xenophon Papademetris,et al.  Graph-theory based parcellation of functional subunits in the brain from resting-state fMRI data , 2010, NeuroImage.

[50]  Ashutosh Kumar Singh,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2010 .

[51]  A. Schleicher,et al.  Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus , 2006, The Journal of comparative neurology.

[52]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[53]  Rutvik H. Desai,et al.  The neurobiology of semantic memory , 2011, Trends in Cognitive Sciences.

[54]  Kaustubh Supekar,et al.  Systems Neuroscience Review Article , 2011 .

[55]  A. Dagher,et al.  Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. , 2006, Cerebral cortex.

[56]  Christina B. Young,et al.  Functional dissociations between four basic arithmetic operations in the human posterior parietal cortex: A cytoarchitectonic mapping study , 2011, Neuropsychologia.

[57]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[58]  V Menon,et al.  Functional heterogeneity of inferior parietal cortex during mathematical cognition assessed with cytoarchitectonic probability maps. , 2009, Cerebral cortex.

[59]  A. Afifi,et al.  The basal ganglia: a neural network with more than motor function. , 2003, Seminars in pediatric neurology.

[60]  K. Amunts,et al.  Centenary of Brodmann's Map — Conception and Fate , 2022 .

[61]  Volkmar Glauche,et al.  Functional properties and interaction of the anterior and posterior intraparietal areas in humans , 2003, The European journal of neuroscience.

[62]  Vinod Menon,et al.  Estimation of resting-state functional connectivity using random subspace based partial correlation: A novel method for reducing global artifacts , 2013, NeuroImage.

[63]  Anil K. Jain,et al.  Combining multiple weak clusterings , 2003, Third IEEE International Conference on Data Mining.

[64]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[65]  G. Glover,et al.  Spiral‐in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts , 2001, Magnetic resonance in medicine.

[66]  K Zilles,et al.  Anatomy and transmitter receptors of the supplementary motor areas in the human and nonhuman primate brain. , 1996, Advances in neurology.

[67]  Naomi B. Pitskel,et al.  Three Systems of Insular Functional Connectivity Identified with Cluster Analysis , 2010, Cerebral cortex.

[68]  Jill P. Mesirov,et al.  Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data , 2003, Machine Learning.

[69]  Jim M. Monti,et al.  Neural Integration of Top-Down Spatial and Feature-Based Information in Visual Search , 2008, The Journal of Neuroscience.

[70]  J. Yelnik,et al.  Modeling the organization of the basal ganglia. , 2008, Revue neurologique.

[71]  Katiuscia Sacco,et al.  Functional connectivity of the insula in the resting brain , 2011, NeuroImage.

[72]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[73]  Kaustubh Supekar,et al.  Developmental Maturation of Dynamic Causal Control Signals in Higher-Order Cognition: A Neurocognitive Network Model , 2012, PLoS Comput. Biol..

[74]  Xenophon Papademetris,et al.  Groupwise whole-brain parcellation from resting-state fMRI data for network node identification , 2013, NeuroImage.

[75]  Ana L. N. Fred,et al.  Combining multiple clusterings using evidence accumulation , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[76]  M. Mesulam,et al.  Insula of the old world monkey. Architectonics in the insulo‐orbito‐temporal component of the paralimbic brain , 1982, The Journal of comparative neurology.

[77]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[78]  Claudio Carpineto,et al.  Consensus Clustering Based on a New Probabilistic Rand Index with Application to Subtopic Retrieval , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[79]  Franco Cauda,et al.  How many clusters in the insular cortex? , 2013, Cerebral cortex.

[80]  Jonathan D. Power,et al.  A Parcellation Scheme for Human Left Lateral Parietal Cortex , 2010, Neuron.