Underground formation characterization and uncertainty quantification using transitional Markov chain Monte Carlo sampling with an efficient parallel implementation
暂无分享,去创建一个
Cosmin Safta | Jiefu Chen | Xuqing Wu | Yueqin Huang | Xin Fu | Mohammad Khalil | Han Lu | Jiefu Chen | M. Khalil | C. Safta | Yueqin Huang | Xuqing Wu | Han Lu | Xin Fu
[1] Marina Vannucci,et al. Nonlinear state-space modeling approaches to real-time autonomous geosteering , 2020, Journal of Petroleum Science and Engineering.
[2] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[3] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[4] A. Abubakar,et al. A General Framework for Constraint Minimization for the Inversion of Electromagnetic Measurements , 2004 .
[5] Cosmin Safta,et al. Uncertainty Quantification Toolkit (UQTk) , 2015 .
[6] Jiefu Chen,et al. Parallel multiple-chain DRAM MCMC for large-scale geosteering inversion and uncertainty quantification , 2019, Journal of Petroleum Science and Engineering.
[7] J. Beck,et al. Important sampling in high dimensions , 2003 .
[8] J. Beck,et al. Bayesian Updating of Structural Models and Reliability using Markov Chain Monte Carlo Simulation , 2002 .
[9] J. Ching,et al. Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging , 2007 .
[10] Iason Papaioannou,et al. Transitional Markov Chain Monte Carlo: Observations and Improvements , 2016 .
[11] Cosmin Safta,et al. Transitional Markov Chain Monte Carlo Sampler in UQTk. , 2020 .
[12] Christophe Andrieu,et al. A tutorial on adaptive MCMC , 2008, Stat. Comput..