Synthesis and optoelectronic properties of Janus-dendrimer-type multivalent donor-acceptor systems.

A convergent, multistep protocol was employed for the synthesis of a Janus-type multivalent donor-acceptor system. The synthetic approach is based on a Sonogashira cross-coupling of two differently ferrocene-(Fc) substituted dendrons and a final sixfold [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) reaction with tetracyanoethene, which occurs regioselectively at only one of the rigidly linked dendrons. The structural and optoelectronic properties of the compounds were investigated by X-ray analysis, UV/vis spectroscopy, and electrochemistry. The target Janus-system displays redox-amphoteric behavior. The nonalkynylated Fc end groups in one dendron are readily and reversibly oxidized. The second dendron, in which the terminal Fc-activated alkynes underwent the CA-RE reaction to give tetracyanobuta-1,3-dienes in the final step of the synthesis, undergoes four reversible 3-e(-) reductions in the very narrow potential range of 1 V. A spontaneous intramolecular charge transfer from the donor into the acceptor hemisphere was not observed. Furthermore, the oxidation potential of the Fc donors in one hemisphere is hardly perturbed by the push-pull acceptors in the other, which suggests that electronic communication along the π-system, with several meta-connectivities, is not efficient. Therefore, the charge-transfer bands seen in the Janus-type system originate from the interaction of the Fc donors with the directly connected tetracyanobuta-1,3-diene acceptors in the same hemisphere.

[1]  T. Okujima,et al.  Synthesis of 1,3-bis(tetracyano-2-azulenyl-3-butadienyl)azulenes by the [2+2] cycloaddition-retroelectrocyclization of 1,3-bis(azulenylethynyl)azulenes with tetracyanoethylene. , 2014, Chemistry.

[2]  C. Katan,et al.  High-yield formation of substituted tetracyanobutadienes from reaction of ynamides with tetracyanoethylene. , 2014, Chemistry.

[3]  S. Thayumanavan,et al.  Supramolecular Disassembly of Facially Amphiphilic Dendrimer Assemblies in Response to Physical, Chemical, and Biological Stimuli , 2014, Accounts of chemical research.

[4]  M. Klein,et al.  Self-assembly of amphiphilic Janus dendrimers into uniform onion-like dendrimersomes with predictable size and number of bilayers , 2014, Proceedings of the National Academy of Sciences.

[5]  A. Hajipour,et al.  Synthesis of triazenes by using aryl diazonium silica sulfates under mild conditions , 2014 .

[6]  Shaoyu Lü,et al.  Synthesis and self-assembly of PAMAM/PAA Janus dendrimers , 2014 .

[7]  V. Percec,et al.  "Single-single" amphiphilic janus dendrimers self-assemble into uniform dendrimersomes with predictable size. , 2014, ACS nano.

[8]  G. Lloyd‐Jones,et al.  Selection of boron reagents for Suzuki-Miyaura coupling. , 2014, Chemical Society reviews.

[9]  T. Okujima,et al.  Synthesis, properties, and redox behavior of tetracyanobutadiene and dicyanoquinodimethane chromophores bearing two azulenyl substituents. , 2013, The Journal of organic chemistry.

[10]  R. Misra,et al.  Aryl-substituted unsymmetrical benzothiadiazoles: synthesis, structure, and properties. , 2013, The Journal of organic chemistry.

[11]  Shaodong Zhang,et al.  Modular synthesis of amphiphilic Janus glycodendrimers and their self-assembly into glycodendrimersomes and other complex architectures with bioactivity to biomedically relevant lectins. , 2013, Journal of the American Chemical Society.

[12]  T. Okujima,et al.  Synthesis of 2-azulenyl-1,1,4,4-tetracyano-3-ferrocenyl-1,3-butadienes by [2+2] cycloaddition of (ferrocenylethynyl)azulenes with tetracyanoethylene. , 2013, Chemistry.

[13]  F. Greco,et al.  Janus PEG-based dendrimers for use in combination therapy: controlled multi-drug loading and sequential release. , 2013, Biomacromolecules.

[14]  R. McDonald,et al.  A Mild and Convenient Synthesis of 1,2,3-Triiodoarenes via Consecutive Iodination/Diazotization/Iodination Strategy , 2013 .

[15]  Yanmei He,et al.  Design and Synthesis of Janus-Type Chiral Dendritic Diphosphanes and Their Applications in Asymmetric Hydrogenation , 2012 .

[16]  B. Jiang,et al.  Design and synthesis of novel amphiphilic Janus dendrimers for bone-targeted drug delivery , 2012 .

[17]  Yanmei He,et al.  Janus dendritic phosphines: synthesis and application in Suzuki coupling reactions , 2012 .

[18]  A. Caminade,et al.  “Janus” dendrimers: syntheses and properties , 2012 .

[19]  C. Nájera,et al.  Recent advances in Sonogashira reactions. , 2011, Chemical Society reviews.

[20]  T. Okujima,et al.  Synthesis and [2+2] Cycloaddition with Tetracyanoethylene of Ene–Diyne Scaffolds Bearing Ferrocenes at the Periphery , 2011 .

[21]  E. Chaikof,et al.  Sequential functionalization of janus‐type dendrimer‐like poly(ethylene oxide)s with camptothecin and folic acid , 2011 .

[22]  B. Cho,et al.  Degree of chain branching-dependent assemblies and conducting behavior in ionic liquid crystalline Janus dendrimers , 2011 .

[23]  R. Jana,et al.  Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. , 2011, Chemical reviews.

[24]  M. Bruce Some Organometallic Chemistry of Tetracyanoethene: CN-displacement and Cycloaddition Reactions with Alkynyl–Transition Metal Complexes and Related Chemistry , 2011 .

[25]  F. Diederich,et al.  Switching the regioselectivity in cycloaddition-retro-electrocyclizations between donor-activated alkynes and the electron-accepting olefins TCNE and TCNQ. , 2011, Chemistry, an Asian journal.

[26]  C. Absalon,et al.  Ferrocenyl-terminated redox stars: synthesis and electrostatic effects in mixed-valence stabilization. , 2011, Journal of the American Chemical Society.

[27]  Chun‐Sing Lee,et al.  Synthesis, crystal structures, and photophysical properties of triphenylamine-based multicyano derivatives. , 2010, The Journal of organic chemistry.

[28]  M. Klein,et al.  Self-Assembly of Janus Dendrimers into Uniform Dendrimersomes and Other Complex Architectures , 2010, Science.

[29]  F. Diederich,et al.  Chiral and Achiral Charge‐Transfer Chromophores with a Dendralene‐Type Backbone by Electronically Controlled Cycloaddition/Cycloreversion Cascades , 2010 .

[30]  É. Boisselier,et al.  Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. , 2010, Chemical reviews.

[31]  F. Diederich,et al.  Non-planar push-pull chromophores. , 2010, Chemical communications.

[32]  D. Astruc,et al.  Dendritic molecular electrochromic batteries based on redox-robust metallocenes. , 2009, Chemistry.

[33]  F. Diederich,et al.  Origin of intense intramolecular charge-transfer interactions in nonplanar push-pull chromophores. , 2009, Chemistry.

[34]  F. Diederich,et al.  Organic super-acceptors with efficient intramolecular charge-transfer interactions by [2+2] cycloadditions of TCNE, TCNQ, and F4-TCNQ to donor-substituted cyanoalkynes. , 2009, Chemistry.

[35]  D. Astruc,et al.  How do redox groups behave around a rigid molecular platform? Hexa(ferrocenylethynyl)benzenes and their "electrostatic" redox chemistry. , 2009, Angewandte Chemie.

[36]  G. Wegner,et al.  Multiple H-bonds directed self-assembly of an amphiphilic and plate-like codendrimer with janus faces at water-air interface. , 2009, Journal of the American Chemical Society.

[37]  D. Astruc,et al.  Giant dendritic molecular electrochrome batteries with ferrocenyl and pentamethylferrocenyl termini. , 2009, Journal of the American Chemical Society.

[38]  S. Buchwald,et al.  Palladium-catalyzed Suzuki-Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. , 2008, Accounts of chemical research.

[39]  K. Rissanen,et al.  Synthesis and characterization of chiral azobenzene dye functionalized Janus dendrimers , 2008 .

[40]  A. Caminade,et al.  Cationic and fluorescent "Janus" dendrimers. , 2008, Organic letters.

[41]  D. Astruc,et al.  Metallocenyl dendrimers and their applications in molecular electronics, sensing, and catalysis. , 2008, Accounts of chemical research.

[42]  P. Ecorchard,et al.  Mixed-transition-metal acetylides: synthesis and characterization of complexes with up to six different transition metals connected by carbon-rich bridging units. , 2008, Chemistry.

[43]  Klaus Müllen,et al.  Two-dimensional graphene nanoribbons. , 2008, Journal of the American Chemical Society.

[44]  F. Diederich,et al.  Metal-Catalyzed Cross-Coupling Reactions: Diederich/Metal , 2007 .

[45]  F. Diederich,et al.  Charge-transfer chromophores by cycloaddition-retro-electrocyclization: multivalent systems and cascade reactions. , 2007, Angewandte Chemie.

[46]  S. Campidelli,et al.  Liquid-crystalline Janus-type fullerodendrimers displaying tunable smectic-columnar mesomorphism. , 2007, Journal of the American Chemical Society.

[47]  Robert Deschenaux,et al.  Liquid-crystalline fullerodendrimers , 2007 .

[48]  Yiyong Huang,et al.  A liquid-phase approach to functionalized Janus dendrimers: novel soluble supports for organic synthesis. , 2007, Organic letters.

[49]  Dongwhan Lee,et al.  Molecular engineering of two-dimensional π-conjugation: expected and unexpected photophysical consequences of a simple particle-in-a-box approach , 2007 .

[50]  C. Nájera,et al.  The Sonogashira reaction: a booming methodology in synthetic organic chemistry. , 2007, Chemical reviews.

[51]  Jean‐Cyrille Hierso,et al.  Palladium-based catalytic systems for the synthesis of conjugated enynes by sonogashira reactions and related alkynylations. , 2007, Angewandte Chemie.

[52]  H. Imahori,et al.  Dendritic Effects on Structure and Photophysical and Photoelectrochemical Properties of Fullerene Dendrimers and Their Nanoclusters , 2007 .

[53]  B. Heinrich,et al.  Supramolecular self-organization of "Janus-like" diblock codendrimers: synthesis, thermal behavior, and phase structure modeling. , 2006, Chemistry.

[54]  Francis C Szoka,et al.  Designing dendrimers for biological applications , 2005, Nature Biotechnology.

[55]  Juan J. González,et al.  A highly directional fourfold hydrogen-bonding motif for supramolecular structures through self-assembly of fullerodendrimers. , 2005, Chemistry.

[56]  M. R. Imam,et al.  Self-assembly of semifluorinated janus-dendritic benzamides into bilayered pyramidal columns. , 2005, Angewandte Chemie.

[57]  Ivan Biaggio,et al.  A new class of organic donor-acceptor molecules with large third-order optical nonlinearities. , 2005, Chemical communications.

[58]  F. Diederich,et al.  Donor‐Substituted Perethynylated Dehydroannulenes and Radiaannulenes: Acetylenic Carbon Sheets Featuring Intense Intramolecular Charge Transfer , 2004 .

[59]  S. Zhang,et al.  Amphiphilic diblock dendrimers with a fullerene core. , 2003, The Journal of organic chemistry.

[60]  P. Baxter Synthesis of a hexagonal nanosized macrocyclic fluorophore with integrated endotopic terpyridine metal-chelation sites. , 2003, Chemistry.

[61]  D. Astruc,et al.  Synthesis of five generations of redox-stable pentamethylamidoferrocenyl dendrimers and comparison of amidoferrocenyl- and pentamethylamidoferrocenyl dendrimers as electrochemical exoreceptors for the selective recognition of H2PO4-, HSO4-, and adenosine 5'-triphosphate (ATP) anions: stereoelectroni , 2003, Chemistry.

[62]  D. Guillon,et al.  Amphiphilic and mesomorphic fullerene-based dendrimers , 2003 .

[63]  K. Müllen,et al.  Single-crystal structures of polyphenylene dendrimers. , 2002, Chemistry.

[64]  K. Sonogashira,et al.  Development of Pd–Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides , 2002 .

[65]  Mark D. Smith,et al.  Organometallic dendrimers based on (tetraphenylcyclobutadiene)cyclopentadienylcobalt modules. , 2002, Journal of the American Chemical Society.

[66]  J. Fréchet,et al.  Dendrimers and Other Dendritic Polymers: Frechet/Dendrimers , 2001 .

[67]  J. Fréchet,et al.  Convergent dendrons and dendrimers: from synthesis to applications. , 2001, Chemical reviews.

[68]  D. Guillon,et al.  Amphiphilic diblock dendrimers: synthesis and incorporation in Langmuir and Langmuir-Blodgett films. , 2001, Journal of the American Chemical Society.

[69]  T. Weil,et al.  Polyphenylene dendrimers with different fluorescent chromophores asymmetrically distributed at the periphery. , 2001, Journal of the American Chemical Society.

[70]  M. Möller,et al.  Synthesis, aggregation, and adsorption phenomena of shape-persistent macrocycles with extraannular polyalkyl substituents. , 2001, Journal of the American Chemical Society.

[71]  M. Haley,et al.  Carbon networks based on dehydrobenzoannulenes. 4. Synthesis of "star" and "trefoil" graphdiyne substructures via sixfold cross-coupling of hexaiodobenzene. , 2001, The Journal of organic chemistry.

[72]  P. Froehling Dendrimers and dyes: a review , 2001 .

[73]  R. Wagner,et al.  Structural Control of Photoinduced Energy Transfer between Adjacent and Distant Sites in Multiporphyrin Arrays , 2000 .

[74]  Ruíz,et al.  Molecular batteries: ferrocenylsilylation of dendrons, dendritic cores, and dendrimers: new convergent and divergent routes to ferrocenyl dendrimers with stable redox activity , 2000, Chemistry.

[75]  Valérie Maraval,et al.  RAPID SYNTHESIS OF PHOSPHORUS-CONTAINING DENDRIMERS WITH CONTROLLED MOLECULAR ARCHITECTURES:A FIRST EXAMPLE OF SURFACE-BLOCK, LAYER-BLOCK, AND SEGMENT-BLOCK DENDRIMERS ISSUED FROM THE SAME DENDRON , 2000 .

[76]  D. Astruc,et al.  Ferrocenylsilylation of dendrons: a fast convergent route to redox-stable ferrocene dendrimers , 2000 .

[77]  Rabe,et al.  A Poly(para-phenylene) with Hydrophobic and Hydrophilic Dendrons: Prototype of an Amphiphilic Cylinder with the Potential to Segregate Lengthwise. , 1999, Angewandte Chemie.

[78]  E. W. Meijer,et al.  About Dendrimers: Structure, Physical Properties, and Applications. , 1999, Chemical reviews.

[79]  A. Caminade,et al.  Dendrimers containing heteroatoms (si, p, B, ge, or bi). , 1999, Chemical reviews.

[80]  F. Diederich,et al.  Functional Dendrimers: Unique Biological Mimics , 1998 .

[81]  Jeffrey S. Moore,et al.  Polar domains on globular macromolecules: Shape-persistent, amphiphilic tridendrons , 1997 .

[82]  A. Gourdon,et al.  Topological Effects on Intramolecular Electron Transfer via Quantum Interference , 1997 .

[83]  Jeffrey S. Moore,et al.  Synthesis and Characterization of Water-Soluble Dendritic Macromolecules with a Stiff, Hydrocarbon Interior , 1997 .

[84]  Jeffrey S. Moore Shape-Persistent Molecular Architectures of Nanoscale Dimension , 1997 .

[85]  Norio Miyaura,et al.  Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds , 1995 .

[86]  C. Hawker,et al.  Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solubilization agents , 1993 .

[87]  Jeffrey S. Moore,et al.  Synthesis of rigid dendritic macromolecules: enlarging the repeat unit size as a function of generation, permitting growth to continue , 1991 .

[88]  D. Mattern,et al.  Direct polyiodination of benzenesulfonic acid , 1991 .

[89]  William A. Goddard,et al.  Starburst Dendrimers: Molecular‐Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter , 1990 .

[90]  J. Barrio,et al.  Convenient synthesis of aryl halides from arylamines via treatment of 1-aryl-3,3-dialkyltriazenes with trimethylsilyl halides , 1981 .

[91]  M. R. Snow,et al.  Cyclopentadienyl-ruthenium and -osmium chemistry. Cleavage of tetracyanoethylene under mild conditions: X-ray crystal structures of [Ru{η3-C(CN)2CPhCC(CN)2}(PPh3)(η-C5H5)] and [Ru{C[C(CN)2]CPhC(CN)2}-(CNBut)(PPh3)(η-C5H5)] , 1981 .

[92]  Y. Tohda,et al.  A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines , 1975 .

[93]  C. Willgerodt,et al.  Bearbeitung des p‐Nitranilins auf Trijod‐ und Tetrajod‐Benzole, auf das Pentajodbenzol, sowie auf alle zu diesen Verbindungen führenden Zwischenproducte , 1901 .