Terahertz and Far Infrared Spectroscopy of Alanine-rich Peptides Having Variable Ellipticity References and Links

Terahertz spectra of four alanine-rich peptides with known secondary structures were studied by terahertz time domain spectroscopy (THz-TDS) and by Fourier transform infrared spectroscopy (FTIR) using a synchrotron light source and a liquid-helium cooled bolometer. At ambient temperatures the usable bandwidth was restricted to 0.2-1.5 THz by the absorbance of water. The existence of a solvation shell around the peptide in solution was observed and its size estimated to be between 11 and 17 Å. By cooling the peptide solution to 80 K in order to reduce the water absorbance the bandwidth was increased to 0.1-3.0 THz for both THz-TDS and FTIR. Spectra were consistent with monotonic absorbance of the peptide and the existence of a solid amorphous low density solvation shell.

J Axel Zeitler | Lynn F Gladden | F. Stillinger | P. Taday | K. Plaxco | A. Faraone | A. Middelberg | T. Huber | E. Fratini | J. Zeitler | L. Gladden | H. Bosshard | S. Ebbinghaus | G. Schwaab | U. Heugen | R. Falconer | K. Ajito | H. Willis | H. J. Labbé | Ruoyu Li | Anton P J Middelberg | J. Knab | A. Middelberg | Ruoyu Li | Robert J Falconer | Tao Ding | Thomas L Huber | R. Uthrakumar | M. Cudby | E. A. Nicol | H. Zakaria | E. Dürr | S. P. Mickan | T. Ding | A. P. Bradley | G. Gardner | R. Falconer | M. Karplus | T. Kortemme | M. Pepper | K. C. Gordon | B. M. Fischer | M. Chance | M. Havenith | B. Sclavi | T. Rades | S. J. Allen | E. Mamontov | A. Donev | M. Gruebele | M. Heyden | D. M. Leitner | Lynn F. Gladden | P. Baglioni | J Xu | S. Torquato | E Castro-Camus | Thomas L. Huber | Ruoyu Li | P. M. Walther | B. Plochocka | H. Fischer | P. Helm | Uhd Jepsen | M. B. Fischer | H. Hoffmann | G. Helm | P. U. Modjesch | Jepsen | B. M. M. Walther | P. Fischer | B Brooks | W N Wang | Y. B. Li | W. Yue | R Rungsawang | Y. Ueno | I. Tomita | G M Png | D. Abbott | Ebbinghaus | S. J. Kim | X. Yu | An | M Nagai | H. Yada | T. Arikawa | K. Tanaka | M. B. Johnston | Y F He | P. I. Ku | J. Y. Chen | A. Markelz | A G Markelz | Y. F. He | B Born | H. Weingärtner | E. Bründermann | A Chakrabartty | R. L. Baldwin | T Arikawa | M. Nagai | P M Chaikin | W. Man | U Heugen | Solute-Induced | J E Bertie | E. Whally | G W Chantry | C J Raj | S. Krishnan | S. Dinakaran | S. Das | A H Xie | Q. He | L. Miller | S H Chen | L. Liu | J A Zeitler | F Haselhuhn | S. Doyle | M. Kind | I Jelesarov | R. M. Thomas | G H Nancollas | R J Falconer | Y. Y. Fan

[1]  Thomas Rades,et al.  Solid-state transition mechanism in carbamazepine polymorphs by time-resolved terahertz spectroscopy. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[3]  B. Fischer,et al.  Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy. , 2002, Biopolymers.

[4]  Martin Gruebele,et al.  The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin. , 2009, Faraday discussions.

[5]  G. H. Nancollas,et al.  Kinetics of crystal growth of calcium oxalate monohydrate , 1974 .

[6]  E. Bründermann,et al.  Solute-induced retardation of water dynamics probed directly by terahertz spectroscopy , 2006, Proceedings of the National Academy of Sciences.

[7]  Martin Gruebele,et al.  An extended dynamical hydration shell around proteins , 2007, Proceedings of the National Academy of Sciences.

[8]  Alan K. Soper,et al.  Structural transformations in amorphous ice and supercooled water and their relevance to the phase diagram of water , 2008 .

[9]  Michael B. Johnston,et al.  Conformational changes of photoactive yellow protein monitored by terahertz spectroscopy , 2008 .

[10]  N Go,et al.  Deoxymyoglobin studied by the conformational normal mode analysis. II. The conformational change upon oxygenation. , 1990, Journal of molecular biology.

[11]  Thomas Rades,et al.  Relaxation and crystallization of amorphous carbamazepine studied by terahertz pulsed spectroscopy. , 2007, Journal of pharmaceutical sciences.

[12]  B. Fischer,et al.  Chemical recognition in terahertz time-domain spectroscopy and imaging , 2005 .

[13]  Yunfen He,et al.  Protein dynamical transition does not require protein structure. , 2008, Physical review letters.

[14]  Shin Yagihara,et al.  Dielectric relaxation time and structure of bound water in biological materials , 1987 .

[15]  Erik Bründermann,et al.  Solvation dynamics of model peptides probed by terahertz spectroscopy. Observation of the onset of collective network motions. , 2009, Journal of the American Chemical Society.

[16]  S. H. A. Chen,et al.  Observation of fragile-to-strong dynamic crossover in protein hydration water. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[17]  R. L. Baldwin,et al.  Helix propensities of the amino acids measured in alanine‐based peptides without helix‐stabilizing side‐chain interactions , 1994, Protein science : a publication of the Protein Society.

[18]  Koichiro Tanaka,et al.  Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution , 2007 .

[19]  A. W. Mantz,et al.  Elimination of Thin Film Infrared Channel Spectra in Fourier Transform Infrared Spectroscopy , 1976 .

[20]  E. Heilweil,et al.  Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz , 2000 .

[21]  B. Fischer,et al.  Terahertz spectroscopic differentiation of microstructures in protein gels. , 2009, Optics express.

[22]  L. Santo,et al.  THz Spectra for Some Bio-molecules , 2007 .

[23]  F. Stillinger,et al.  Some Observations on the Random Packing of Hard Ellipsoids , 2006 .

[24]  K. Ajito,et al.  Angle-dependent terahertz time-domain spectroscopy of amino acid single crystals. , 2006, The journal of physical chemistry. B.

[25]  B. Fischer,et al.  Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared , 2003 .

[26]  S. Dinakaran,et al.  Growth and optical absorption studies on potassium dihydrogen phosphate single crystals , 2008 .

[27]  H. Willis,et al.  Far infrared studies of the formation of potassium fluoride dihydrate in and its interaction with low molecular weight polytetrafluorethylene , 1981 .

[28]  Koichiro Tanaka,et al.  Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy , 2008 .

[29]  H. Bosshard,et al.  Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper). , 1998, Biochemistry.

[30]  S. J. Allen,et al.  Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy , 2006, Protein science : a publication of the Protein Society.

[31]  S. Doyle,et al.  Synchrotron radiation X-ray diffraction study of the particle formation of pseudo-polymorphic calcium oxalate , 2006 .

[32]  N Go,et al.  Deoxymyoglobin studied by the conformational normal mode analysis. I. Dynamics of globin and the heme-globin interaction. , 1990, Journal of molecular biology.

[33]  M. Karplus,et al.  Normal modes for specific motions of macromolecules: application to the hinge-bending mode of lysozyme. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[34]  John E. Bertie,et al.  Absorptivity of Ice I in the Range 4000–30 cm−1 , 1969 .

[35]  A. Middelberg,et al.  Far-Infrared Spectroscopy of Protein Higher-Order Structures , 2010, Applied spectroscopy.

[36]  A. Markelz,et al.  Protein dynamical transition in terahertz dielectric response , 2007, 0705.2049.

[37]  Mark R. Chance,et al.  Low frequency vibrations of amino acid homopolymers observed by synchrotron far-IR absorption spectroscopy: Excited state effects dominate the temperature dependence of the spectra , 1999 .