Minimal Learning Machine: A novel supervised distance-based approach for regression and classification
暂无分享,去创建一个
Amaury Lendasse | Francesco Corona | Guilherme De A. Barreto | Yoan Miché | Amauri Holanda de Souza Júnior | G. Barreto | Y. Miché | A. Lendasse | F. Corona | A. H. S. Júnior
[1] Qinyu. Zhu. Extreme Learning Machine , 2013 .
[2] Klaus Obermayer,et al. A Stochastic Self-Organizing Map for Proximity Data , 1999, Neural Computation.
[3] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[4] Robert J. Schalkoff,et al. Pattern recognition - statistical, structural and neural approaches , 1991 .
[5] Jianzhong Wang,et al. Geometric Structure of High-Dimensional Data and Dimensionality Reduction , 2012 .
[6] Klaus Obermayer,et al. Classi cation on Pairwise Proximity , 2007 .
[7] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[8] Ah Chung Tsoi,et al. A self-organizing map for adaptive processing of structured data , 2003, IEEE Trans. Neural Networks.
[9] Alessio Micheli,et al. A general framework for unsupervised processing of structured data , 2004, Neurocomputing.
[10] C. M. Cuadras,et al. A distance based regression model for prediction with mixed data , 1990 .
[11] Ronald L. Rivest,et al. Introduction to Algorithms , 1990 .
[12] S. Haykin,et al. Adaptive Filter Theory , 1986 .
[13] Brian H. McArdle,et al. FITTING MULTIVARIATE MODELS TO COMMUNITY DATA: A COMMENT ON DISTANCE‐BASED REDUNDANCY ANALYSIS , 2001 .
[14] Hui Wang,et al. Using Radial Basis Function Networks for Function Approximation and Classification , 2012 .
[15] Vasilios N. Katsikis,et al. An improved method for the computation of the Moore-Penrose inverse matrix , 2011, Appl. Math. Comput..
[16] Ewa Niewiadomska-Szynkiewicz,et al. Optimization Schemes For Wireless Sensor Network Localization , 2009, Int. J. Appl. Math. Comput. Sci..
[17] Martin D. Buhmann,et al. Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.
[18] Panu Somervuo,et al. Self-Organizing Maps and Learning Vector Quantization for Feature Sequences , 1999, Neural Processing Letters.
[19] Marc M. Van Hulle,et al. Enhancing the Yield of High-Density electrode Arrays through Automated electrode Selection , 2012, Int. J. Neural Syst..
[20] Barbara Hammer,et al. Topographic Mapping of Large Dissimilarity Data Sets , 2010, Neural Computation.
[21] Golub Gene H. Et.Al. Matrix Computations, 3rd Edition , 2007 .
[22] Frank-Michael Schleif,et al. Adaptive conformal semi-supervised vector quantization for dissimilarity data , 2014, Pattern Recognit. Lett..
[23] Jason Weston,et al. A general regression technique for learning transductions , 2005, ICML '05.
[24] Horst Bunke. Structural and Syntactic Pattern Recognition , 1993, Handbook of Pattern Recognition and Computer Vision.
[25] Joachim M. Buhmann,et al. Pairwise Data Clustering by Deterministic Annealing , 1997, IEEE Trans. Pattern Anal. Mach. Intell..
[26] F. Wilcoxon. Individual Comparisons by Ranking Methods , 1945 .
[27] Gene H. Golub,et al. Matrix computations , 1983 .
[28] Frank-Michael Schleif,et al. Learning vector quantization for (dis-)similarities , 2014, Neurocomputing.
[29] Thomas Hofmann,et al. Pattern Recognition, Statistical , 2006 .
[30] Amaury Lendasse,et al. OP-ELM: Optimally Pruned Extreme Learning Machine , 2010, IEEE Transactions on Neural Networks.
[31] Frank-Michael Schleif,et al. Linear Time Relational Prototype Based Learning , 2012, Int. J. Neural Syst..
[32] Pierre Courrieu,et al. Fast Computation of Moore-Penrose Inverse Matrices , 2008, ArXiv.
[33] G. Warnock,et al. Thinking About Thinking , 1975 .
[34] Jeremy W. Lichstein,et al. Multiple regression on distance matrices: a multivariate spatial analysis tool , 2007, Plant Ecology.
[35] Bernhard Schölkopf,et al. A tutorial on support vector regression , 2004, Stat. Comput..
[36] Robert Tibshirani,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.
[37] Christopher M. Bishop,et al. Neural networks for pattern recognition , 1995 .
[38] Chee Kheong Siew,et al. Extreme learning machine: Theory and applications , 2006, Neurocomputing.
[39] Bernhard Schölkopf,et al. Kernel Dependency Estimation , 2002, NIPS.
[40] Ponnuthurai Nagaratnam Suganthan,et al. A novel kernel prototype-based learning algorithm , 2004, ICPR 2004.
[41] Bernard Carlos Widrow,et al. Thinking about thinking: the discovery of the LMS algorithm , 2005, IEEE Signal Process. Mag..
[42] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.
[43] Willy Hereman,et al. Statistical methods in surveying by trilateration , 1998 .
[44] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[45] Thomas Villmann,et al. Efficient Kernelized Prototype Based Classification , 2011, Int. J. Neural Syst..