Multilevel weighted least squares polynomial approximation

Weighted least squares polynomial approximation uses random samples to determine projections of functions onto spaces of polynomials. It has been shown that, using an optimal distribution of sample locations, the number of samples required to achieve quasi-optimal approximation in a given polynomial subspace scales, up to a logarithmic factor, linearly in the dimension of this space. However, in many applications, the computation of samples includes a numerical discretization error. Thus, obtaining polynomial approximations with a single level method can become prohibitively expensive, as it requires a sufficiently large number of samples, each computed with a sufficiently small discretization error. As a solution to this problem, we propose a multilevel method that utilizes samples computed with different accuracies and is able to match the accuracy of single-level approximations with reduced computational cost. We derive complexity bounds under certain assumptions about polynomial approximability and sample work. Furthermore, we propose an adaptive algorithm for situations where such assumptions cannot be verified a priori. Finally, we provide an efficient algorithm for the sampling from optimal distributions and an analysis of computationally favorable alternative distributions. Numerical experiments underscore the practical applicability of our method.

[1]  N. Levenberg,et al.  Multivariate simultaneous approximation , 2002 .

[2]  R. DeVore,et al.  ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF PARAMETRIC AND STOCHASTIC ELLIPTIC PDE'S , 2011 .

[3]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[4]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[5]  J. Gentle Random number generation and Monte Carlo methods , 1998 .

[6]  A. L. Levin,et al.  Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights , 1992 .

[7]  A. Cohen,et al.  Optimal weighted least-squares methods , 2016, 1608.00512.

[8]  Albert Cohen,et al.  Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs , 2015 .

[9]  A. Frommer,et al.  Bounds for the decay of the entries in inverses and Cauchy – Stieltjes functions of sparse , normal matrices , 2017 .

[10]  John A. Evans,et al.  Hierarchical B-spline complexes of discrete differential forms , 2017, IMA Journal of Numerical Analysis.

[11]  R. DeVore,et al.  Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .

[12]  A. Buffa,et al.  A priori error for unilateral contact problems with Lagrange multipliers and isogeometric analysis , 2017, IMA Journal of Numerical Analysis.

[13]  Albert Cohen,et al.  Discrete least squares polynomial approximation with random evaluations − application to parametric and stochastic elliptic PDEs , 2015 .

[14]  Helmut Harbrecht,et al.  Multilevel Accelerated Quadrature for PDEs with Log-Normally Distributed Diffusion Coefficient , 2016, SIAM/ASA J. Uncertain. Quantification.

[15]  Fabio Nobile,et al.  Multi-index Stochastic Collocation Convergence Rates for Random PDEs with Parametric Regularity , 2015, Foundations of Computational Mathematics.

[16]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[17]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[18]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[19]  M. Hegland Adaptive sparse grids , 2003 .

[20]  Tamás Erdélyi,et al.  Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials , 1994 .

[21]  Albert Cohen,et al.  Sequential Sampling for Optimal Weighted Least Squares Approximations in Hierarchical Spaces , 2018, SIAM J. Math. Data Sci..

[22]  Giuseppe Mastroianni,et al.  Weighted Polynomial Inequalities with Doubling and A∞ Weights , 2000 .

[23]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[24]  Vladimir N. Temlyakov,et al.  Hyperbolic Cross Approximation , 2016, 1601.03978.

[25]  Michael Griebel,et al.  Reproducing Kernel Hilbert Spaces for Parametric Partial Differential Equations , 2017, SIAM/ASA J. Uncertain. Quantification.

[26]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[27]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[28]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[29]  Albert Cohen,et al.  On the Stability and Accuracy of Least Squares Approximations , 2011, Foundations of Computational Mathematics.

[30]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[31]  Frances Y. Kuo,et al.  Multilevel Quasi-Monte Carlo methods for lognormal diffusion problems , 2015, Math. Comput..

[32]  Alfio Quarteroni,et al.  Some results of bernstein and jackson type for polynomial approximation inLp-spaces , 1984 .

[33]  Fabio Nobile,et al.  Sparse approximation of multilinear problems with applications to kernel-based methods in UQ , 2016, Numerische Mathematik.

[34]  Fabio Nobile,et al.  Convergence estimates in probability and in expectation for discrete least squares with noisy evaluations at random points , 2015, J. Multivar. Anal..

[35]  Doron S. Lubinsky,et al.  Erratum: Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights , 1992 .

[36]  Alireza Doostan,et al.  Coherence motivated sampling and convergence analysis of least squares polynomial Chaos regression , 2014, 1410.1931.

[37]  Raul Tempone,et al.  Multi-Index Stochastic Collocation for random PDEs , 2015, 1508.07467.

[38]  Tao Zhou,et al.  A Christoffel function weighted least squares algorithm for collocation approximations , 2014, Math. Comput..

[39]  Jun S. Liu,et al.  Metropolized independent sampling with comparisons to rejection sampling and importance sampling , 1996, Stat. Comput..