Smartphone based, portable optical biosensor utilizing surface plasmon resonance

A portable low cost biosensor suited for future medical diagnostic application is presented. The device comprises a custom designed scaffold, a disposable polymeric chip for surface plasmon resonance (SPR) sensing, and a smartphone. This commercial telecommunication device provides both, the optical illumination required for triggering of the SPR phenomenon and established by its active-matrix of organic light-emitting diodes (i.e., the smartphone display), whereas optical detection is obtained by means of its 1.9 Mpx CMOS image sensor that serves as the front camera. This concept does not require any additional optical device, except the SPR-chip itself and mechanical scaffold. The so-called angular interrogation mode has been employed for detection of the SPR feature. Employing appropriate data extraction algorithms, the sensitivity of the instrument approaches 10-5 RIU. This value compares well with existing laboratory style SPR-instruments, confirming feasibility of this technical approach.

[1]  Karl S. Booksh,et al.  Calibration of Surface Plasmon Resonance Refractometers Using Locally Weighted Parametric Regression , 1997 .

[2]  Clement E. Furlong,et al.  A portable surface plasmon resonance (SPR) sensor system with temperature regulation , 2003 .

[3]  P. Nath,et al.  Label-free biodetection using a smartphone. , 2013, Lab on a chip.

[5]  Sinclair S. Yee,et al.  Optimal linear data analysis for surface plasmon resonance biosensors , 1999 .

[6]  J. Homola,et al.  Surface Plasmon Resonance (SPR) Sensors , 2006 .

[7]  Clement E. Furlong,et al.  Improving surface plasmon resonance sensor performance using critical-angle compensation , 1999, Optics East.

[8]  Carlos Alberto de Souza Filho,et al.  Line Shape Analysis and Extended Instrumental Operation of Surface Plasmon Resonance Sensors , 2010 .

[9]  Andrew G Kirk,et al.  Numerical method for high accuracy index of refraction estimation for spectro-angular surface plasmon resonance systems. , 2008, Optics express.

[10]  Aydogan Ozcan,et al.  Albumin testing in urine using a smart-phone. , 2013, Lab on a chip.

[11]  G. Priftis,et al.  Surface plasmon resonance as a tool for the estimation of adsorbed polymeric layer characteristics: Theoretical considerations and experiment , 2007 .

[12]  Antonio Marcus Nogueira Lima,et al.  Optical properties and instrumental performance of thin gold films near the surface plasmon resonance , 2006 .

[13]  E. Kretschmann Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen , 1971 .

[14]  Robert T. Chien,et al.  Two New Edge Detectors , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  J. Homola,et al.  Surface plasmon resonance (SPR) sensors: approaching their limits? , 2009, Optics express.

[16]  J. Homola Surface plasmon resonance based sensors , 2006 .

[17]  Koji Suzuki,et al.  Asymmetric SPR sensor response curve-fitting equation for the accurate determination of SPR resonance angle , 2002 .

[18]  Marek Piliarik,et al.  Data analysis for optical sensors based on spectroscopy of surface plasmons , 2002 .

[19]  Carsten Thirstrup,et al.  Diffractive optical coupling element for surface plasmon resonance sensors , 2004 .

[20]  A scanning surface plasmon resonance sensor based on the phase shift algorithm , 2012 .

[21]  D. Filippini,et al.  Surface plasmon resonance chemical sensing on cell phones. , 2012, Angewandte Chemie.