A New Method for the Estimation of Broadband Apparent Albedo Using Hyperspectral Airborne Hemispherical Directional Reflectance Factor Values

The broadband albedo values retrieved from satellite sensors are usually compared directly to ground measurements. Some authors have noted the necessity of high spatial resolution albedo estimates to fill the gap between ground measurements and satellite retrievals. In this respect, hyperspectral airborne data with high spatial resolution is a powerful tool. Here, a new operational method for the calculation of airborne broadband apparent albedo over the spectral range of 350–2500 nm is presented. This new method uses the Hemispherical Directional Reflectance Factor (HDRF) as a proxy for the narrowband albedo, assuming a Lambertian approximation. The broadband apparent albedo obtained is compared to that estimated using theapparent albedo equation devised for the Moderate Resolution Imaging Spectroradiometer (MODIS). Airborne data were collected using the Airborne Hyperspectral Scanner (AHS). Field data were acquired at three sites: a camelina field, a green grass field, and a vineyard. The HDRF can be used to approximate the narrowband albedo for all View Zenith Angle (VZA) values for flights parallel to the solar principal plane (SPP); for flights orthogonal to the SPP, discrepancies are observed when the VZA approaches −45°. Root Mean Square Error (RMSE) values in the range 0.009–0.018 were obtained using the new method, improving upon previous results over the same area (RMSEs of 0.01–0.03). The relative error in the albedo estimation using the new method is 12% for −36.2° < VZA < 40.8° in the case of flights parallel to the SPP and less than 15% for −13° < VZA < 45° and 45% for VZA = −45° for flights orthogonal to the SPP. The good performance of the new method lies in the use of the at-surface solar irradiance and the proposed integration method.

[1]  Lin Li,et al.  Analysis of Global Land Surface Shortwave Broadband Albedo From Multiple Data Sources , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[2]  Joaquin Melia,et al.  Bidirectional Reflectance Factor Analysis from Field Radiometry and Hymap Data , 2001 .

[3]  A. Strahler,et al.  Retrieval of Land Surface Albedo from Satellite Observations: A Simulation Study , 1999 .

[4]  Chad J. Shuey,et al.  Validating MODIS land surface reflectance and albedo products: methods and preliminary results , 2002 .

[5]  Xubin Zeng,et al.  Dependence of land surface albedo on solar zenith angle: observations and model parameterization , 2008 .

[6]  C. Long,et al.  SURFRAD—A National Surface Radiation Budget Network for Atmospheric Research , 2000 .

[7]  F. Jacoba,et al.  Mapping short-wave albedo of agricultural surfaces using airborne PolDER data , 2001 .

[8]  Irene Pérez,et al.  AHS and CASI Processing for the REFLEX Remote Sensing Campaign: Methods and Results , 2015, Acta Geophysica.

[9]  Alan H. Strahler,et al.  Evaluation of Moderate Resolution Imaging Spectroradiometer land surface visible and shortwave albedo products at FLUXNET sites , 2010 .

[10]  Shunlin Liang,et al.  Estimation of High-Resolution Land Surface Shortwave Albedo From AVIRIS Data , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[11]  Sarah Theiss,et al.  Physical Principles Of Remote Sensing , 2016 .

[12]  J. Roujean,et al.  A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data , 1992 .

[13]  C. Woodcock,et al.  Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 2. Validation , 2003 .

[14]  Krista Gaustad,et al.  Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility , 2011 .

[15]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[16]  Michael E. Schaepman,et al.  Correction of Reflectance Anisotropy Effects of Vegetation on Airborne Spectroscopy Data and Derived Products , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Zhongbo Su,et al.  Estimating surface fluxes over the north Tibetan Plateau area with ASTER imagery , 2008 .

[18]  A. Strahler,et al.  A review of reflectance nomenclature used in remote sensing , 2000 .

[19]  W. Rees Physical Principles of Remote Sensing , 1990 .

[20]  Martha C. Anderson,et al.  A comparison of operational remote sensing-based models for estimating crop evapotranspiration , 2009 .

[21]  Jerry Y. Pan,et al.  Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network , 2012 .

[22]  Paul D. Colaizzi,et al.  Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures☆ , 2012 .

[23]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[24]  Luiz Eduardo Oliveira E. Cruz de Aragão,et al.  A MODIS-Based Energy Balance to Estimate Evapotranspiration for Clear-Sky Days in Brazilian Tropical Savannas , 2012, Remote. Sens..

[25]  K. Moffett,et al.  Remote Sens , 2015 .

[26]  José A. Sobrino,et al.  Evaluation of the MODIS Albedo product over a heterogeneous agricultural area , 2013 .

[27]  Feng Gao,et al.  Development of land surface albedo parameterization based on Moderate Resolution Imaging Spectroradiometer (MODIS) data , 2005 .

[28]  Ana Andreu Méndez Water monitoring in vegetation covers through multi-scale energy balance moddelling using time series of remotely sensed data , 2014 .

[29]  C. Duguay,et al.  Estimating Surface Reflectance and Albedo from Landsat-5 Thematic Mapper over Rugged Terrain , 1992 .

[30]  Massimo Menenti,et al.  S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance , 2000 .

[31]  F. Gao,et al.  Detecting vegetation structure using a kernel-based BRDF model , 2003 .

[32]  Wout Verhoef,et al.  Modeling Top of Atmosphere Radiance over Heterogeneous Non-Lambertian Rugged Terrain , 2015, Remote. Sens..

[33]  Suhong Liu,et al.  Mapping Surface Broadband Albedo from Satellite Observations: A Review of Literatures on Algorithms and Products , 2015, Remote. Sens..

[34]  Chad J. Shuey,et al.  Narrowband to broadband conversions of land surface albedo: II , 2003 .

[35]  Gunnar Myhre,et al.  Uncertainties in radiative forcing due to surface albedo changes caused by land-use changes , 2003 .

[36]  José A. Sobrino,et al.  Impacts of the broadband albedo on actual evapotranspiration estimated by S-SEBI model over an agricultural area , 2014 .

[37]  T. Painter,et al.  Reflectance quantities in optical remote sensing - definitions and case studies , 2006 .

[38]  Luis Alonso,et al.  An Overview of the Regional Experiments for Land-atmosphere Exchanges 2012 (REFLEX 2012) Campaign , 2015, Acta Geophysica.

[39]  Michael D. King,et al.  Variability in Surface BRDF at Different Spatial Scales (30 m-500 m) Over a Mixed Agricultural Landscape as Retrieved from Airborne and Satellite Spectral Measurements , 2011 .

[40]  Teemu Hakala,et al.  Land Surface Albedos Computed from BRF Measurements with a Study of Conversion Formulae , 2010, Remote. Sens..

[41]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[42]  Zhuosen Wang,et al.  Use of In Situ and Airborne Multiangle Data to Assess MODIS- and Landsat-Based Estimates of Directional Reflectance and Albedo , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[43]  P. Sellers Remote sensing of the land surface for studies of global change , 1993 .

[44]  R. Allen,et al.  At-Surface Reflectance and Albedo from Satellite for Operational Calculation of Land Surface Energy Balance , 2008 .

[45]  S. Liang Narrowband to broadband conversions of land surface albedo I Algorithms , 2001 .

[46]  Joseph Michalsky,et al.  Field Measured Spectral Albedo–Four Years of Data from the Western U.S. Prairie , 2013 .

[47]  Andres Kuusk,et al.  The angular distribution of reflectance and vegetation indices in barley and clover canopies , 1991 .

[48]  S. Schwartz,et al.  The Atmospheric Radiation Measurement (ARM) Program: Programmatic Background and Design of the Cloud and Radiation Test Bed , 1994 .

[49]  Philip Lewis,et al.  Comparison of MODIS broadband albedo over an agricultural site with ground measurements and values derived from Earth observation data at a range of spatial scales , 2004, International Journal of Remote Sensing.

[50]  A. Salim Bawazir,et al.  Estimating Daily Net Radiation over Vegetation Canopy through Remote Sensing and Climatic Data , 2007 .

[51]  R. Dubayah Estimating net solar radiation using Landsat Thematic Mapper and digital elevation data , 1992 .

[52]  Richard G. Allen,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model , 2007 .

[53]  Andrew A. Lacis,et al.  Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 1. Method and sensitivity to input data uncertainties , 1995 .

[54]  Yanmin Shuai,et al.  Validation of Moderate Resolution Imaging Spectroradiometer (MODIS) albedo retrieval algorithm: Dependence of albedo on solar zenith angle , 2009 .

[55]  J. Muller,et al.  MODIS BRDF / Albedo Product : Algorithm Theoretical Basis Document Version 5 . 0 , 1999 .

[56]  J. Norman,et al.  Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature , 1995 .

[57]  William P. Kustas,et al.  An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes , 2007 .

[58]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[59]  Xubin Zeng,et al.  Moderate Resolution Imaging Spectroradiometer bidirectional reflectance distribution function-based albedo parameterization for weather and climate models , 2007 .

[60]  B. Briegleb Delta‐Eddington approximation for solar radiation in the NCAR community climate model , 1992 .

[61]  José A. Sobrino,et al.  Estimation of the Spatially Distributed Surface Energy Budget for AgriSAR 2006, Part I: Remote Sensing Model Intercomparison , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[62]  Luis Alonso,et al.  Relating Hyperspectral Airborne Data to Ground Measurements in a Complex and Discontinuous Canopy , 2015, Acta Geophysica.

[63]  Feng Gao,et al.  Use of Moderate-Resolution Imaging Spectroradiometer bidirectional reflectance distribution function products to enhance simulated surface albedos , 2004 .

[64]  R. Dickinson Land Surface Processes and Climate—Surface Albedos and Energy Balance , 1983 .