High-power nickel/metal-hydride battery using new micronetwork substrate: Discharge rate capability and cycle-life performance

[1]  P. K. Effa,et al.  Discharge Kinetics of the Nickel Electrode , 1984 .

[2]  M. Oshitani,et al.  Development of a Pasted Nickel Electrode with High Active Material Utilization , 1989 .

[3]  D. Corrigan,et al.  Effect of Coprecipitated Metal Ions on the Electrochemistry of Nickel Hydroxide Thin Films: Cyclic Voltammetry in 1M KOH , 1989 .

[4]  J. Newman,et al.  Modeling of Nickel/Metal Hydride Batteries , 1997 .

[5]  T. Sakai,et al.  R&d on metal hydride materials and Ni-MH batteries in Japan , 1999 .

[6]  Chaoyang Wang,et al.  Modeling discharge and charge characteristics of nickel–metal hydride batteries , 1999 .

[7]  Robert F. Nelson,et al.  Power requirements for batteries in hybrid electric vehicles , 2000 .

[8]  Akihiro Taniguchi,et al.  Development of nickel/metal-hydride batteries for EVs and HEVs , 2001 .

[9]  Hiroshi Nakamura,et al.  Deterioration mechanism of nickel metal-hydride batteries for hybrid electric vehicles , 2005 .

[10]  H. Fukunaga,et al.  A nickel electrode with Ni-coated 3D steel sheet for hybrid electric vehicle applications , 2005 .

[11]  Tetsuo Sakai,et al.  Development of Mg-containing MmNi5-based alloys for low-cost and high-power Ni–MH battery , 2006 .

[12]  T. Sakai,et al.  Influence of Nickel Foam Pore Structure on the High-Rate Capability of Nickel/Metal-Hydride Batteries , 2007 .

[13]  T. Sakai,et al.  Nickel Substrate Having Three-Dimensional Micronetwork Structure for High-Power Nickel/Metal-Hydride Battery , 2007 .