The role of nanotechnology in the development of battery materials for electric vehicles.

A significant amount of battery research and development is underway, both in academia and industry, to meet the demand for electric vehicle applications. When it comes to designing and fabricating electrode materials, nanotechnology-based approaches have demonstrated numerous benefits for improved energy and power density, cyclability and safety. In this Review, we offer an overview of nanostructured materials that are either already commercialized or close to commercialization for hybrid electric vehicle applications, as well as those under development with the potential to meet the requirements for long-range electric vehicles.

[1]  Jae-Hun Kim,et al.  Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.

[2]  C. Su,et al.  Atomic layer deposition of TiO2 on negative electrode for lithium ion batteries , 2013 .

[3]  R. Cabeza,et al.  Present and Future , 2008 .

[4]  S. Hirano,et al.  Synthesis of hierarchical mesoporous nest-like Li4Ti5O12 for high-rate lithium ion batteries , 2012 .

[5]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[6]  M. P. Paranthaman,et al.  Mesoporous TiO2–B Microspheres with Superior Rate Performance for Lithium Ion Batteries , 2011, Advanced materials.

[7]  Guoxian Liang,et al.  A soft chemistry approach to coating of LiFePO4 with a conducting polymer. , 2011, Angewandte Chemie.

[8]  Kenneth A. Walz,et al.  The Electrochemical Stability of Spinel Electrodes Coated with ZrO2 , Al2 O 3 , and SiO2 from Colloidal Suspensions , 2004 .

[9]  Byoungwoo Kang,et al.  Conformal Coating Strategy Comprising N-doped Carbon and Conventional Graphene for Achieving Ultrahigh Power and Cyclability of LiFePO4. , 2015, Nano letters.

[10]  Chong Seung Yoon,et al.  Cathode Material with Nanorod Structure—An Application for Advanced High-Energy and Safe Lithium Batteries , 2013 .

[11]  Qinmin Pan,et al.  Novel Modified Graphite as Anode Material for Lithium-Ion Batteries , 2002 .

[12]  D. Wexler,et al.  Amorphous Carbon Coated High Grain Boundary Density Dual Phase Li4Ti5O12‐TiO2: A Nanocomposite Anode Material for Li‐Ion Batteries , 2011 .

[13]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[14]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[15]  Dean J. Miller,et al.  Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach , 2014, Nature Communications.

[16]  Li Li,et al.  Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries. , 2013, Nano letters.

[17]  Yi Cui,et al.  Solution-grown silicon nanowires for lithium-ion battery anodes. , 2010, ACS nano.

[18]  M. Inagaki,et al.  Carbon-coated graphite for anode of lithium ion rechargeable batteries: Carbon coating conditions and precursors , 2009 .

[19]  M. Yoshio,et al.  Functional electrolytes: Novel type additives for cathode materials, providing high cycleability performance , 2006 .

[20]  J. Dicarlo,et al.  Characteristics of graphite anode modified by CVD carbon coating , 2006 .

[21]  Michael Holzapfel,et al.  High Rate Capability of Graphite Negative Electrodes for Lithium-Ion Batteries , 2005 .

[22]  P. Moreau,et al.  Synthesis of nanosized Si particles via a mechanochemical solid–liquid reaction and application in Li-ion batteries , 2007 .

[23]  J. Dahn,et al.  Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V , 2004 .

[24]  D. Aurbacha,et al.  On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries , 1999 .

[25]  D. Abraham,et al.  Manganese in Graphite Anode and Capacity Fade in Li Ion Batteries , 2014 .

[26]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .

[27]  L. Nazar,et al.  Nano-network electronic conduction in iron and nickel olivine phosphates , 2004, Nature materials.

[28]  Zhigang Zak Fang,et al.  A lithium–oxygen battery based on lithium superoxide , 2016, Nature.

[29]  Li Li,et al.  Aprotic and aqueous Li-O₂ batteries. , 2014, Chemical reviews.

[30]  D. Gregory,et al.  Surface coating of LiMn2O4 spinel via in situ hydrolysis route: effect of the solution , 2012, Ionics.

[31]  Chuan Wu,et al.  Influence of composite LiCl–KCl molten salt on microstructure and electrochemical performance of spinel Li4Ti5O12 , 2008 .

[32]  E. P. Lewis In perspective. , 1972, Nursing outlook.

[33]  K. Amine,et al.  Tuning the Mn Deposition on the Anode to Improve the Cycle Performance of the Mn‐Based Lithium Ion Battery , 2016 .

[34]  Brigitte Pecquenard,et al.  High‐Performance All‐Solid‐State Cells Fabricated With Silicon Electrodes , 2012 .

[35]  Lei Tian,et al.  Al-doped spinel LiAl0.1Mn1.9O4 with improved high-rate cyclability in aqueous electrolyte , 2010 .

[36]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[37]  Yang-Kook Sun,et al.  Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries. , 2005, Journal of the American Chemical Society.

[38]  Chang Liu,et al.  Poly(vinyl chloride) (PVC) Coated Idea Revisited: Influence of Carbonization Procedures on PVC-Coated Natural Graphite as Anode Materials for Lithium Ion Batteries , 2008 .

[39]  Xueping Gao,et al.  Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres , 2010 .

[40]  Rui Zhang,et al.  A Review of Solid Electrolyte Interphases on Lithium Metal Anode , 2015, Advanced science.

[41]  K. Amine,et al.  Electrochemical and thermal behavior of copper coated type MAG-20 natural graphite , 2002 .

[42]  Guozhong Cao,et al.  Three-dimensional coherent titania-mesoporous carbon nanocomposite and its lithium-ion storage properties. , 2012, ACS applied materials & interfaces.

[43]  Jie Gao,et al.  Suppression of PC decomposition at the surface of graphitic carbon by Cu coating , 2006 .

[44]  Bala Haran,et al.  Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries , 2002 .

[45]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[46]  Jaephil Cho,et al.  A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles. , 2003, Angewandte Chemie.

[47]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[48]  Chengdu Liang,et al.  Lithium–Sulfur Batteries , 2011 .

[49]  A. Manthiram,et al.  Challenges and prospects of lithium-sulfur batteries. , 2013, Accounts of chemical research.

[50]  Rahul Malik,et al.  Kinetics of non-equilibrium lithium incorporation in LiFePO4. , 2011, Nature materials.

[51]  B. Ratnakumar,et al.  Irreversible Capacities of Graphite in Low‐Temperature Electrolytes for Lithium‐Ion Batteries , 1999 .

[52]  M. Yoshio,et al.  Spherical carbon-coated natural graphite as a lithium-ion battery-anode material. , 2003, Angewandte Chemie.

[53]  Kunio Nishimura,et al.  Recent development of carbon materials for Li ion batteries , 2000 .

[54]  Bin Li,et al.  Tris (pentafluorophenyl) phosphine: An electrolyte additive for high voltage Li-ion batteries , 2012 .

[55]  C. Liang,et al.  Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery , 2009 .

[56]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: self-structural modifications. , 2014, Chemical reviews.

[57]  Kenji Fukuda,et al.  Effect of Carbon Coating on Electrochemical Performance of Treated Natural Graphite as Lithium‐Ion Battery Anode Material , 2000 .

[58]  Minsheng Lei,et al.  Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel , 2007 .

[59]  A. Yamada,et al.  Experimental visualization of lithium diffusion in LixFePO4. , 2008, Nature materials.

[60]  Kang Xu,et al.  Electrolyte Additive in Support of 5 V Li Ion Chemistry , 2011 .

[61]  Rahul Malik,et al.  Particle size dependence of the ionic diffusivity. , 2010, Nano letters.

[62]  D. Bresser,et al.  Beneficial influence of succinic anhydride as electrolyte additive on the self-discharge of 5 V LiNi0.4Mn1.6O4 cathodes , 2013 .

[63]  B. Chowdari,et al.  Metal oxides and oxysalts as anode materials for Li ion batteries. , 2013, Chemical reviews.

[64]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[65]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[66]  Wei Guo,et al.  Graphite@MoO3 composite as anode material for lithium ion battery in propylene carbonate-based electrolyte , 2010 .

[67]  Shinichi Komaba,et al.  Electrochemical Behavior of Graphite Electrode for Lithium Ion Batteries in Mn and Co Additive Electrolytes , 2000 .

[68]  Chong Seung Yoon,et al.  Nanostructured high-energy cathode materials for advanced lithium batteries. , 2012, Nature materials.

[69]  G. Yushin,et al.  Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. , 2010, Journal of the American Chemical Society.

[70]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[71]  Qinmin Pan,et al.  Poly(acrylonitrile) encapsulated graphite as anode materials for lithium ion batteries , 2002 .

[72]  Minoru Inaba,et al.  Surface Film Formation on Graphite Negative Electrode in Lithium-Ion Batteries: AFM Study in an Ethylene Carbonate-Based Solution , 2001 .

[73]  Hui Wu,et al.  A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. , 2012, Nano letters.

[74]  Chang Liu,et al.  Electrochemical performance of pyrolytic carbon-coated natural graphite spheres , 2006 .

[75]  G. Demopoulos,et al.  A Novel Green Approach to Synthesis of Nanostructured Li4Ti5O12 Anode Material , 2013 .

[76]  Shinichi Komaba,et al.  Impact of 2-Vinylpyridine as Electrolyte Additive on Surface and Electrochemistry of Graphite for C ∕ LiMn2O4 Li-Ion Cells , 2005 .

[77]  B. Boukamp,et al.  ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX , 1981 .

[78]  T. Sakai,et al.  Micrometer-Scale Amorphous Si Thin-Film Electrodes Fabricated by Electron-Beam Deposition for Li-Ion Batteries , 2006 .

[79]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[80]  Jun Chen,et al.  Nest‐like Silicon Nanospheres for High‐Capacity Lithium Storage , 2007 .

[81]  Guangyuan Zheng,et al.  Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries , 2013, Nature Communications.

[82]  Mo-hua Yang,et al.  Enhanced High-Rate Cycling Stability of LiMn2O4 Cathode by ZrO2 Coating for Li-Ion Battery , 2005 .

[83]  G. Pistoia,et al.  Lithium batteries : new materials, developments, and perspectives , 1994 .

[84]  First-principles study on the electronic structure of a LiFePO4 (0 1 0) surface adsorbed with carbon , 2012 .

[85]  Haoshen Zhou,et al.  Enhancing the performances of Li-ion batteries by carbon-coating: present and future. , 2012, Chemical communications.

[86]  Yang-Kook Sun,et al.  Role of surface coating on cathode materials for lithium-ion batteries , 2010 .

[87]  M. Yoshio,et al.  Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere , 2004 .

[88]  Philippe Knauth,et al.  Nanostructured negative electrodes based on titania for Li-ion microbatteries , 2011 .

[89]  Min-Kyu Song,et al.  A long-life, high-rate lithium/sulfur cell: a multifaceted approach to enhancing cell performance. , 2013, Nano letters.

[90]  Yet-Ming Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[91]  Yi Cui,et al.  One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials , 2011 .

[92]  H. Fang,et al.  Suppressing Li3PO4 impurity formation in LiFePO4/Fe2P by a nonstoichiometry synthesis and its effect on electrochemical properties , 2011 .

[93]  Hui Yang,et al.  Microwave solid-state synthesis of spinel Li4Ti5O12 nanocrystallites as anode material for lithium-ion batteries , 2007 .

[94]  Li-Jun Wan,et al.  Lithium-sulfur batteries: electrochemistry, materials, and prospects. , 2013, Angewandte Chemie.

[95]  M. Yoshio,et al.  Suppression of Li deposition on surface of graphite using carbon coating by thermal vapor deposition , 2011 .

[96]  Mark N. Obrovac,et al.  Alloy Design for Lithium-Ion Battery Anodes , 2007 .

[97]  Improvement of storage performance of LiMn2O4/graphite battery with AlF3-coated LiMn2O4 , 2013, Ionics.

[98]  A. Manthiram,et al.  Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries , 2001 .

[99]  J. Tarascon,et al.  Solution-Combustion Synthesized Nanocrystalline Li4Ti5O12 As High-Rate Performance Li-Ion Battery Anode , 2010 .

[100]  Jun Lu,et al.  A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries , 2013, Nature Communications.

[101]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[102]  Kwang‐Bum Kim,et al.  Li4Ti5O12/reduced graphite oxide nano-hybrid material for high rate lithium-ion batteries , 2010 .

[103]  Richard Van Noorden The rechargeable revolution: A better battery , 2014, Nature.

[104]  Christopher S. Johnson,et al.  Anomalous capacity and cycling stability of xLi2MnO3 · (1 − x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50 °C , 2007 .

[105]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[106]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[107]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[108]  Joo-Seong Kim,et al.  Controlled Lithium Dendrite Growth by a Synergistic Effect of Multilayered Graphene Coating and an Electrolyte Additive , 2015 .

[109]  Kenji Fukuda,et al.  Carbon-Coated Si as a Lithium-Ion Battery Anode Material , 2002 .

[110]  D. Guyomard,et al.  Silicon Composite Electrode with High Capacity and Long Cycle Life , 2009 .

[111]  Bruno Scrosati,et al.  The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li‐Enriched Nickel‐Manganese Oxide Electrodes for Li‐Ion Batteries , 2012, Advanced materials.

[112]  G. Bondarenko,et al.  Electrochemical Characteristics of Negative Electrodes Made of Ozone-Treated Graphite for Lithium-Ion Batteries , 2001 .

[113]  Y. Cuia,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[114]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[115]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[116]  B. Iversen,et al.  Rapid Green Continuous Flow Supercritical Synthesis of High Performance Li4Ti5O12 Nanocrystals for Li Ion Battery Applications , 2011 .

[117]  Zhonghua Lu,et al.  Staging Phase Transitions in Li x CoO2 , 2002 .