EGFR mutations in lung adenocarcinomas: clinical testing experience and relationship to EGFR gene copy number and immunohistochemical expression.

Lung adenocarcinomas responsive to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors possess EGFR mutations and often increased EGFR copy number. We prospectively studied 334 clinical cases using polymerase chain reaction-based assays to detect deletions within exon 19 and the L858R mutation in exon 21, which together account for approximately 90% of EGFR mutations. Seventy-eight (23%) of these tumors had an EGFR mutation, with 55 (71%) exon 19 deletions and 23 (29%) exon 21 L858R mutations. We were able to compare mutant and normal EGFR alleles and found a preferential amplification of the mutant allele. The association of mutations with EGFR amplification (determined by chromogenic in situ hybridization) and EGFR expression (determined by immunohistochemistry) was further examined in a subset of 60 tumors. EGFR amplification (> or =5 EGFR signals per nucleus) was seen in 15 of 29 (52%) EGFR-mutated tumors but in only five of 31 (6%) non-mutated tumors (P = 0.006). EGFR overexpression was strongly associated with amplification but was statistically independent of EGFR mutation. Most patients with EGFR mutations (17 of 29, 59%) never smoked compared with 13% (four of 31) of patients lacking such mutations (P = 0.0003). The association of amplification with smoking status was marginal and was nonexistent with EGFR expression. Thus, these results indicate that EGFR amplification, preferentially of the mutant allele, often accompanies EGFR mutation, whereas EGFR immunohistochemical staining associates with amplification but cannot predict EGFR mutation status.

[1]  D. Haber,et al.  Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[2]  William Pao,et al.  Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[3]  Elisa Rossi,et al.  Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. , 2005, Journal of the National Cancer Institute.

[4]  Patricia L. Harris,et al.  Epidermal growth factor receptor mutations and gene amplification in non-small-cell lung cancer: molecular analysis of the IDEAL/INTACT gefitinib trials. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[5]  M. Ladanyi,et al.  Rapid polymerase chain reaction-based detection of epidermal growth factor receptor gene mutations in lung adenocarcinomas. , 2005, The Journal of molecular diagnostics : JMD.

[6]  A. Iafrate,et al.  Validation of chromogenic in situ hybridization for detection of EGFR copy number amplification in nonsmall cell lung carcinoma , 2007, Modern Pathology.

[7]  J. Minna,et al.  Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. , 2006, Journal of the National Cancer Institute.

[8]  Sanja Dacic,et al.  Significance of EGFR protein expression and gene amplification in non-small cell lung carcinoma. , 2006, American journal of clinical pathology.

[9]  W. Gerald,et al.  EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations , 2005, Modern Pathology.

[10]  Thomas LaFramboise,et al.  Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing , 2006, Nature Medicine.

[11]  Chan Zeng,et al.  Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[12]  S. Gabriel,et al.  EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy , 2004, Science.

[13]  Roy S Herbst,et al.  KRAS Mutation Is an Important Predictor of Resistance to Therapy with Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non–Small-Cell Lung Cancer , 2007, Clinical Cancer Research.

[14]  M. Meyerson,et al.  A Rapid and Sensitive Enzymatic Method for Epidermal Growth Factor Receptor Mutation Screening , 2006, Clinical Cancer Research.

[15]  William Pao,et al.  Lung adenocarcinoma: guiding EGFR-targeted therapy and beyond , 2008, Modern Pathology.

[16]  H. Varmus,et al.  KRAS Mutations and Primary Resistance of Lung Adenocarcinomas to Gefitinib or Erlotinib , 2005, PLoS medicine.

[17]  M. Ladanyi,et al.  Clinical Course of Patients with Non–Small Cell Lung Cancer and Epidermal Growth Factor Receptor Exon 19 and Exon 21 Mutations Treated with Gefitinib or Erlotinib , 2006, Clinical Cancer Research.

[18]  M. Buyse,et al.  Immunocytochemical markers in stage I lung cancer: relevance to prognosis. , 1997, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[19]  R. Wilson,et al.  EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  T. Shibata,et al.  Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[21]  M. Ladanyi,et al.  Epidermal Growth Factor Receptor Mutation Testing in Lung Cancer: Searching for the Ideal Method , 2007, Clinical Cancer Research.

[22]  Patricia L. Harris,et al.  Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. , 2004, The New England journal of medicine.

[23]  H. Osada,et al.  EGFR point mutation in non‐small cell lung cancer is occasionally accompanied by a second mutation or amplification , 2006, Cancer science.

[24]  F. Hirsch,et al.  Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes: a Southwest Oncology Group Study. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[25]  M. Meyerson,et al.  Epidermal Growth Factor Receptor Mutation Testing in the Care of Lung Cancer Patients , 2006, Clinical Cancer Research.