Characterizations of the Free Disposal Condition for Nonconvex Economies on Infinite Dimensional Commodity Spaces

Our aim in this paper is to prove geometric characterizations of the free disposal condition for nonconvex economies on infinite dimensional commodity spaces even if the cone and the production set involved in the condition have an empty interior such as in $L^1$ with the positive cone $L^1_+$. We then use this characterization to prove the existence of Pareto and weak Pareto optimal points. We also explore a notion of extremal systems a la Kruger--Mordukhovich. We show that the free disposal hypothesis alone assures the extremality of the production set with respect to some set.

[1]  Bernard Cornet Marginal cost pricing and Pareto optimality , 1988 .

[2]  Rajiv Vohra,et al.  An Extension of the Second Welfare Theorem to Economies with Nonconvexities and Public Goods , 1987 .

[3]  Abderrahim Jourani,et al.  Lagrange Multipliers for Multiobjective Programs with a General Preference , 2008 .

[4]  Bernard Cornet,et al.  Existence of Marginal Cost Pricing Equilibria in Economies with Several Nonconvex Firms , 1990 .

[5]  Boris S. Mordukhovich,et al.  An abstract extremal principle with applications to welfare economics , 2000 .

[6]  Nicholas C. Yannelis,et al.  Equilibrium Theory in Infinite Dimensional Spaces , 1991 .

[7]  Jonathan M. Borwein,et al.  A nonconvex separation property in Banach spaces , 1998, Math. Methods Oper. Res..

[8]  R. Rockafellar Generalized Directional Derivatives and Subgradients of Nonconvex Functions , 1980, Canadian Journal of Mathematics.

[9]  Bertrand Crettez,et al.  On the Characterization of Efficient Production Vectors , 2007 .

[10]  Bernard Cornet,et al.  The Second Welfare Theorem in Nonconvex Economies , 1986 .

[11]  M. Quinzii Increasing returns and efficiency , 1992 .

[12]  M. Ali Khan The Mordukhovich Normal Cone and the Foundations of Welfare Economics , 1999 .

[13]  G. Debreu The Coefficient of Resource Utilization , 1951 .

[14]  Abderrahim Jourani,et al.  Necessary conditions for extremality and separation theorems with applications to multiobjective optimization , 1998 .

[15]  R. Rockafellar Directionally Lipschitzian Functions and Subdifferential Calculus , 1979 .

[16]  Boris Polyak,et al.  B.S. Mordukhovich. Variational Analysis and Generalized Differentiation. I. Basic Theory, II. Applications , 2009 .

[17]  F. Giannessi Variational Analysis and Generalized Differentiation , 2006 .

[18]  Rajiv Vohra,et al.  An approximate decentralization of Pareto optimal allocations in locally convex spaces , 1988 .

[19]  A. Jourani The role of locally compact cones in nonsmooth analysis* , 2016 .

[20]  Alejandro Jofré,et al.  An intrinsic characterization of free disposal hypothesis , 2006 .

[21]  Geoffrey Heal,et al.  On a General Existence Theorem for Marginal Cost Pricing Equilibria , 1986 .

[22]  David M. Kreps,et al.  A Course in Microeconomic Theory , 2020 .

[23]  Charalambos D. Aliprantis On the Mas-Colell-Richard Equilibrium Theorem , 1997 .

[24]  Alejandro Jofré,et al.  Supporting weakly Pareto optimal allocations in infinite dimensional nonconvex economies , 2006 .

[25]  Kwan Koo Yun,et al.  The Dubovickii-Miljutin Lemma and characterizations of optimal allocations in non-smooth economies , 1995 .

[26]  Rajiv Vohra,et al.  Pareto optimal allocations of nonconvex economies in locally convex spaces , 1988 .

[27]  Joël Benoist Ensembles de production non convexes et théorie de l'équilibre géneral , 1990 .

[28]  A. Ioffe Approximate subdifferentials and applications 3: the metric theory , 1989 .

[29]  A. Ioffe Approximate subdifferentials and applications II , 1986 .

[30]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[31]  Andreu Mas-Colell,et al.  The Price Equilibrium Existence Problem in Topological Vector Lattice s , 1986 .

[32]  B. Mordukhovich Generalized Differential Calculus for Nonsmooth and Set-Valued Mappings , 1994 .

[33]  Icinqsley Laffer. THE FOUNDATIONS OF WELFARE ECONOMICS , 1951 .

[34]  Boris S. Mordukhovich,et al.  Pareto Optimality in Nonconvex Economies with Infinite-dimensional Commodity Spaces , 2001, J. Glob. Optim..

[35]  Antonio Villar General Equilibrium with Increasing Returns , 1996 .

[36]  J. Hicks The Foundations of Welfare Economics , 1939 .

[37]  Bernard Cornet,et al.  Valuation equilibrium and Pareto optimum in non-convex economies , 1988 .

[38]  R. H. Strotz Theory of Value: An Axiomatic Analysis of Economic Equilibrium. , 1961 .

[39]  K. Arrow An Extension of the Basic Theorems of Classical Welfare Economics , 1951 .

[40]  G. Debreu VALUATION EQUILIBRIUM AND PARETO OPTIMUM. , 1954, Proceedings of the National Academy of Sciences of the United States of America.