A characterization of the Logarithmic Least Squares Method

Abstract We provide an axiomatic characterization of the Logarithmic Least Squares Method (sometimes called row geometric mean), used for deriving a preference vector from a pairwise comparison matrix. This procedure is shown to be the only one satisfying two properties, correctness in the consistent case, which requires the reproduction of the inducing vector for any consistent matrix, and invariance to a specific transformation on a triad, that is, the weight vector is not influenced by an arbitrary multiplication of matrix elements along a 3-cycle by a positive scalar.

[1]  László Csató,et al.  Characterization of the Row Geometric Mean Ranking with a Group Consensus Axiom , 2017, Group Decision and Negotiation.

[2]  Eduardo Conde,et al.  Inferring Efficient Weights from Pairwise Comparison Matrices , 2006, Math. Methods Oper. Res..

[3]  Matteo Brunelli,et al.  Recent Advances on Inconsistency Indices for Pairwise Comparisons - A Commentary , 2015, Fundam. Informaticae.

[4]  J. Fichtner On deriving priority vectors from matrices of pairwise comparisons , 1986 .

[5]  Michele Fedrizzi,et al.  A general formulation for some inconsistency indices of pairwise comparisons , 2018, Ann. Oper. Res..

[6]  S. Bozóki Inefficient weights from pairwise comparison matrices with arbitrarily small inconsistency , 2014 .

[7]  László Csató,et al.  Characterization of an inconsistency ranking for pairwise comparison matrices , 2016, Ann. Oper. Res..

[8]  László Csató Eigenvector Method and Rank Reversal in Group Decision Making Revisited , 2017, Fundam. Informaticae.

[9]  W. Cook,et al.  Deriving weights from pairwise comparison ratio matrices: An axiomatic approach , 1988 .

[10]  Salvatore Greco,et al.  The mathematical equivalence of the "spanning tree" and row geometric mean preference vectors and its implications for preference analysis , 2017, Eur. J. Oper. Res..

[11]  Lajos Rónyai,et al.  On optimal completion of incomplete pairwise comparison matrices , 2010, Math. Comput. Model..

[12]  Vitaliy V. Tsyganok,et al.  The logarithmic least squares optimality of the geometric mean of weight vectors calculated from all spanning trees for (in)complete pairwise comparison matrices , 2017 .

[13]  George Rabinowitz,et al.  Some Comments on Measuring World Influence , 1976 .

[14]  D. Bouyssou Ranking methods based on valued preference relations: A characterization of the net flow method , 1992 .

[15]  René van den Brink,et al.  On Axiomatizations of the Shapley Value for Assignment Games , 2012 .

[16]  Gerhard J. Woeginger,et al.  An axiomatic characterization of the Hirsch-index , 2008, Math. Soc. Sci..

[17]  G. Crawford,et al.  A note on the analysis of subjective judgment matrices , 1985 .

[18]  Waldemar W. Koczkodaj,et al.  On Axiomatization of Inconsistency Indicators for Pairwise Comparisons , 2013, Fundam. Informaticae.

[19]  J. Barzilai Deriving weights from pairwise comparison matrices , 1997 .

[20]  Jacek Szybowski,et al.  Axiomatization of Inconsistency Indicators for Pairwise Comparisons Matrices Revisited , 2015, ArXiv.

[21]  Matteo Brunelli,et al.  CHARACTERIZING PROPERTIES FOR INCONSISTENCY INDICES IN THE AHP , 2011 .

[22]  Adrian Satja Kurdija,et al.  A universal voting system based on the Potential Method , 2017, Eur. J. Oper. Res..

[23]  Noel Bryson,et al.  A Goal Programming Method for Generating Priority Vectors , 1995 .

[24]  K. Arrow A Difficulty in the Concept of Social Welfare , 1950, Journal of Political Economy.

[25]  Jacek Szybowski,et al.  The improvement of data in pairwise comparison matrices , 2018, KES.

[26]  L. S. Shapley,et al.  17. A Value for n-Person Games , 1953 .

[27]  Bice Cavallo,et al.  Investigating Properties of the ⊙-Consistency Index , 2012, IPMU.

[28]  János Fülöp,et al.  Efficient weight vectors from pairwise comparison matrices , 2016, Eur. J. Oper. Res..

[29]  Michele Fedrizzi,et al.  Axiomatic properties of inconsistency indices for pairwise comparisons , 2013, J. Oper. Res. Soc..

[30]  G. Crawford,et al.  The Analysis of Subjective Judgment Matrices. , 1985 .

[31]  Lajos Rónyai,et al.  Incomplete Pairwise Comparison Matrices and Weighting Methods , 2016, Fundam. Informaticae.

[32]  Thierry Marchant,et al.  An axiomatic approach to bibliometric rankings and indices , 2014, J. Informetrics.

[33]  Jacek Szybowski,et al.  The limit of inconsistency reduction in pairwise comparisons , 2016, Int. J. Appl. Math. Comput. Sci..

[34]  Theo K. Dijkstra,et al.  On the extraction of weights from pairwise comparison matrices , 2013, Central Eur. J. Oper. Res..

[35]  Yi Peng,et al.  Jie Ke versus AlphaGo: A ranking approach using decision making method for large-scale data with incomplete information , 2018, Eur. J. Oper. Res..

[36]  Eng Ung Choo,et al.  A common framework for deriving preference values from pairwise comparison matrices , 2004, Comput. Oper. Res..

[37]  J. Barzilai,et al.  Consistent weights for judgements matrices of the relative importance of alternatives , 1987 .

[38]  Matteo Brunelli,et al.  Studying a set of properties of inconsistency indices for pairwise comparisons , 2015, Ann. Oper. Res..

[39]  Thomas L. Saaty,et al.  Multicriteria Decision Making: The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation , 1990 .

[40]  László Csató,et al.  An application of incomplete pairwise comparison matrices for ranking top tennis players , 2014, Eur. J. Oper. Res..

[41]  László Csató,et al.  Ranking by pairwise comparisons for Swiss-system tournaments , 2012, Central European Journal of Operations Research.

[42]  László Csató,et al.  Axiomatizations of inconsistency indices for triads , 2018, Annals of Operations Research.

[43]  Joaquín Pérez Ortega,et al.  Eigenvector Priority Function Causes Strong Rank Reversal in Group Decision Making , 2016, Fundam. Informaticae.