AVL Trees with Relaxed Balance

The idea of relaxed balance is to uncouple the rebalancing in search trees from the updating in order to speed up request processing in main-memory databases. In this paper, we describe a relaxed version of AVL trees. We prove that each update gives rise to at most a logarithmic number of rebalancing operations and that the number of rebalancing operations in the semidynamic case is amortized constant.

[1]  Lauri Malmi,et al.  Group updates for relaxed height-balanced trees , 1999, PODS '99.

[2]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[3]  Eljas Soisalon-Soininen,et al.  Relaxed Balanced Red-Black Trees , 1997, CIAC.

[4]  Joan Boyar,et al.  Efficient Rebalancing of Chromatic Search Trees , 1992, J. Comput. Syst. Sci..

[5]  Ding-Zhu Du,et al.  Advances in Algorithms, Languages, and Complexity , 1997 .

[6]  Kurt Mehlhorn,et al.  An Amortized Analysis of Insertions into AVL-Trees , 1986, SIAM J. Comput..

[7]  Joan Boyar,et al.  Amortization Results for Chromatic Search Trees, with an Application to Priority Queues , 1995, WADS.

[8]  Derick Wood,et al.  Concurrency control in database structures with relaxed balance , 1987, PODS '87.

[9]  Leonidas J. Guibas,et al.  A dichromatic framework for balanced trees , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[10]  Derick Wood,et al.  Relaxed avl trees, main-memory databases and concurrency , 1996, Int. J. Comput. Math..

[11]  David Maier,et al.  Hysterical B-trees , 1981, Inf. Process. Lett..

[12]  Sabine Hanke,et al.  The Performance of Concurrent Red-Black Tree Algorithms , 1998, WAE.

[13]  Kim S. Larsen,et al.  B-trees with relaxed balance , 1995, Proceedings of 9th International Parallel Processing Symposium.

[14]  R. Tarjan Amortized Computational Complexity , 1985 .

[15]  Eljas Soisalon-Soininen,et al.  Relaxed Balancing in Search Trees , 1997, Advances in Algorithms, Languages, and Complexity.

[16]  Kim S. Larsen,et al.  Relaxed Balance through Standard Rotations , 1997, WADS.

[17]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[18]  Kim S. Larsen,et al.  Relaxed balance for search trees with local rebalancing , 1997, Acta Informatica.

[19]  Joep L. W. Kessels On-the-fly optimization of data structures , 1983, CACM.

[20]  Eljas Soisalon-Soininen,et al.  Uncoupling updating and rebalancing in chromatic binary search trees , 1991, PODS '91.

[21]  Kim S. Larsen,et al.  Efficient Rebalancing of B-Trees with Relaxed Balance , 1996, Int. J. Found. Comput. Sci..

[22]  Kim S. Larsen Amortized constant relaxed rebalancing using standard rotations , 1997, Acta Informatica.

[23]  Kim S. Larsen AVL trees with relaxed balance , 1994, Proceedings of 8th International Parallel Processing Symposium.