Tris(2,2,2-trifluoroethyl) phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode

Abstract In this paper, we report positive effect of Tris(2,2,2-trifluoroethyl) phosphite (TTFP) as additive during initial activation and cycling of Li-rich-NMC xLi2MnO3–(1 − x)LiMO2 (x >> 1; M = Ni, Co, Mn) cathode in EC/DMC + 1 M LiPF6 electrolyte. Firstly conductivity and viscosity of electrolyte with x wt.% TTFP; 0 wt.%

[1]  Dennis W. Dees,et al.  Investigations on high energy lithium-ion batteries with aqueous binder , 2013 .

[2]  C. Delmas,et al.  Reversible Oxygen Participation to the Redox Processes Revealed for Li1.20Mn0.54Co0.13Ni0.13O2 , 2013 .

[3]  Michael Holzapfel,et al.  Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. , 2006, Journal of the American Chemical Society.

[4]  Nam-Soon Choi,et al.  Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries , 2015 .

[5]  Yongyao Xia,et al.  Thermal and electrochemical stability of cathode materials in solid polymer electrolyte , 2001 .

[6]  Miaofang Chi,et al.  Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study , 2011 .

[7]  R. Kühnel,et al.  The influence of the electrochemical and thermal stability of mixtures of ionic liquid and organic carbonate on the performance of high power lithium-ion batteries , 2013 .

[8]  N. Sharma,et al.  High Performance Composite Lithium-Rich Nickel Manganese Oxide Cathodes for Lithium-Ion Batteries , 2013 .

[9]  Ji‐Guang Zhang,et al.  Interface modifications by anion receptors for high energy lithium ion batteries , 2014 .

[10]  Arumugam Manthiram,et al.  Surface Modification of High Capacity Layered Li [ Li0.2Mn0.54Ni0.13Co0.13 ] O2 Cathodes by AlPO4 , 2008 .

[11]  Kang Xu,et al.  Electrolyte Additive in Support of 5 V Li Ion Chemistry , 2011 .

[12]  Paulo J. Ferreira,et al.  Atomic Structure of a Lithium-Rich Layered Oxide Material for Lithium-Ion Batteries: Evidence of a Solid Solution , 2011 .

[13]  S. Gangopadhyay,et al.  Ionic conductivity enhancement of sputtered gold nanoparticle-in-ionic liquid electrolytes , 2014 .

[14]  Ganesan Nagasubramanian,et al.  Effects of additives on thermal stability of Li ion cells , 2005 .

[15]  S. Harris,et al.  A study of a number of mixed transition metal oxide spinels using X-ray photoelectron spectroscopy , 1989 .

[16]  Shinichi Komaba,et al.  Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2. , 2011, Journal of the American Chemical Society.

[17]  J. H. Scofield,et al.  Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV , 1976 .

[18]  Shengbo Zhang,et al.  Partially fluorinated solvent as a co-solvent for the non-aqueous electrolyte of Li/air battery , 2011 .

[19]  Huanting Wang,et al.  Thermal stability of LiPF6-based electrolyte and effect of contact with various delithiated cathodes of Li-ion batteries , 2009 .

[20]  A. Manthiram,et al.  Structural and Electrochemical Characterization of (NH4)2HPO4-Treated Lithium-Rich Layered Li1.2Ni0.2Mn0.6O2 Cathodes for Lithium-Ion Batteries , 2013 .

[21]  A. Manthiram,et al.  The role of composition in the atomic structure, oxygen loss, and capacity of layered Li–Mn–Ni oxide cathodes , 2014 .

[22]  Li Lu,et al.  Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material. , 2012, Physical chemistry chemical physics : PCCP.

[23]  K. Kang,et al.  Critical Role of Oxygen Evolved from Layered Li–Excess Metal Oxides in Lithium Rechargeable Batteries , 2012 .

[24]  Meiten Koh,et al.  Fluorinated electrolytes for 5 V lithium-ion battery chemistry , 2013 .

[25]  Kang Xu,et al.  Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate , 2002 .

[26]  Y. Baba,et al.  Thermal stability of LixCoO2 cathode for lithium ion battery , 2002 .

[27]  Ilias Belharouak,et al.  High-energy cathode material for long-life and safe lithium batteries. , 2009, Nature materials.

[28]  C. Delmas,et al.  Electron Transfer Mechanisms upon Lithium Deintercalation from LiCoO2 to CoO2 Investigated by XPS , 2008 .

[29]  Yuichi Sato,et al.  Direct observation of the partial formation of a framework structure for Li-rich layered cathode mat , 2011 .

[30]  Linhai Zhuo,et al.  Simultaneous surface coating and chemical activation of the Li-rich solid solution lithium rechargeable cathode and its improved performance , 2013 .

[31]  Manabu Watanabe,et al.  Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 , 2010 .

[32]  Daniel P. Abraham,et al.  Long-Range and Local Structure in the Layered Oxide Li1.2Co0.4Mn0.4O2 , 2011 .

[33]  John T. Vaughey,et al.  Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: xLi2MnO3·(1 − x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7) , 2008 .

[34]  Jung-Gu Kim,et al.  Tris(4-fluorophenyl) Phosphine and Tris(2,2,2-trifluoroethyl) Phosphite as Flame-Retarding Additives in Li-Ion Batteries , 2011, ECS Transactions.

[35]  D. A. Shirley,et al.  High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold , 1972 .

[36]  K Ramesha,et al.  Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. , 2013, Nature materials.

[37]  Wenfang Feng,et al.  Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for l , 2011 .

[38]  Bruno Scrosati,et al.  The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li‐Enriched Nickel‐Manganese Oxide Electrodes for Li‐Ion Batteries , 2012, Advanced materials.

[39]  D. Abraham,et al.  Local Structure of Layered Oxide Electrode Materials for Lithium‐Ion Batteries , 2010, Advanced materials.

[40]  Zhen Zhou,et al.  Recent progress in high-voltage lithium ion batteries , 2013 .

[41]  Kang Xu,et al.  Tris(2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries , 2003 .

[42]  Michael M. Thackeray,et al.  Enhancing the rate capability of high capacity xLi2MnO3 · (1 -x)LiMO2 (M = Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment , 2009 .

[43]  Jianming Zheng,et al.  Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. , 2012, ACS nano.

[44]  Kota Suzuki,et al.  High-pressure synthesis of lithium-rich layered rock-salt Li2(Mn3/8Co1/4Ni3/8)O3-x for lithium battery cathodes , 2014 .

[45]  B. Lucht,et al.  Inorganic additives for passivation of high voltage cathode materials , 2011 .

[46]  B. Hwang,et al.  Electrochemical properties of Li[NixLi(1−2x)/3Mn(2−x)/3]O2 (0 ≤ x ≤ 0.5) cathode materials prepared by a sol–gel process , 2005 .

[47]  T. Peng,et al.  Synthesis and electrochemical property of xLi2MnO3·(1 − x)LiMnO2 composite cathode materials derived from partially reduced Li2MnO3 , 2014 .

[48]  K. Kang,et al.  Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery , 2010 .

[49]  Li Li,et al.  Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries , 2014 .

[50]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[51]  Seokgwang Doo,et al.  Phosphorus derivatives as electrolyte additives for lithium-ion battery: The removal of O 2 generated from lithium-rich layered oxide cathode , 2013 .

[52]  S. Mitra,et al.  Li2MnO3 rich-LiMn0.33Co0.33Ni0.33O2 integrated nano-composites as high energy density lithium-ion battery cathode materials , 2013 .

[53]  Qingsong Wang,et al.  Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode , 2013 .

[54]  B. Hwang,et al.  Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[Ni(x)Li((1-2x)/3)Mn((2-x)/3)]O2 (0 ≤ x ≤ 0.5). , 2014, Journal of the American Chemical Society.

[55]  Yong Yang,et al.  Structural and electrochemical characterization of xLi[Li1/3Mn2/3]O2·(1 − x)Li[Ni1/3Mn1/3Co1/3]O2 (0 ≤ x ≤ 0.9) as cathode materials for lithium ion batteries , 2008 .

[56]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[57]  Jun Wang,et al.  Synthesis and electrochemical properties of layered lithium transition metal oxides , 2011 .