Numerically consistent regularization of force‐based frame elements

Recent advances in the literature regularize the strain-softening response of force-based frame elements by either modifying the constitutive parameters or scaling selected integration weights. Although the former case maintains numerical accuracy for strain-hardening behavior, the regularization requires a tight coupling of the element constitutive properties and the numerical integration method. In the latter case, objectivity is maintained for strain-softening problems; however, there is a lack of convergence for strain-hardening response. To resolve the dichotomy between strain-hardening and strain-softening solutions, a numerically consistent regularization technique is developed for force-based frame elements using interpolatory quadrature with two integration points of prescribed characteristic lengths at the element ends. Owing to manipulation of the integration weights at the element ends, the solution of a Vandermonde system of equations ensures numerical accuracy in the linear-elastic range of response. Comparison of closed-form solutions and published experimental results of reinforced concrete columns demonstrates the effect of the regularization approach on simulating the response of structural members. Copyright © 2008 John Wiley & Sons, Ltd.

[1]  Michael H. Scott,et al.  Software Patterns for Nonlinear Beam-Column Models , 2008 .

[2]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[3]  Donald W. White,et al.  Displacement, Flexibility, and Mixed Beam – Column Finite Element Formulations for Distributed Plasticity Analysis , 2005 .

[4]  O. C. Zienkiewicz,et al.  The patch test—a condition for assessing FEM convergence , 1986 .

[5]  Filip C. Filippou,et al.  Non-linear spatial Timoshenko beam element with curvature interpolation , 2001 .

[6]  Stephen A. Mahin,et al.  Analysis of Reinforced Concrete Beam-Columns under Uniaxial Excitation , 1988 .

[7]  Milan Jirásek Analytical and Numerical Solutions for Frames with Softening Hinges , 1997 .

[8]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[9]  Z. Bažant,et al.  Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .

[10]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[11]  Luis Ibarra,et al.  Hysteretic models that incorporate strength and stiffness deterioration , 2005 .

[12]  Melbourne Fernald Giberson,et al.  The response of nonlinear multi-story structures subjected to earthquake excitation , 1967 .

[13]  Gregory G. Deierlein,et al.  STRESS-RESULTANT PLASTICITY FOR FRAME STRUCTURES , 1998 .

[14]  Jose´A. Pincheira,et al.  Seismic Analysis of Older Reinforced Concrete Columns , 1999 .

[15]  J. Mander,et al.  Theoretical stress strain model for confined concrete , 1988 .

[16]  O. C. Zienkiewicz,et al.  THE PATCH TEST: A CONDITION FOR ASSESSING FINITE ELEMENT CONVERGENCE , 1986 .

[17]  R. Park,et al.  Flexural Members with Confined Concrete , 1971 .

[18]  Alessandra Marini,et al.  Analysis of Reinforced Concrete Elements Including Shear Effects , 2006 .

[19]  Mehdi Dehghan,et al.  On selection of the best coefficients in interpolatory quadrature rules , 2006, Appl. Math. Comput..

[20]  V. Ciampi,et al.  EQUILIBRIUM BASED ITERATIVE SOLUTIONS FOR THE NON-LINEAR BEAM PROBLEM , 1997 .

[21]  Francisco Armero,et al.  Numerical modeling of softening hinges in thin Euler-Bernoulli beams , 2006 .

[22]  K. Hjelmstad,et al.  Variational Basis of Nonlinear Flexibility Methods for Structural Analysis of Frames , 2005 .

[23]  F. Filippou,et al.  Mixed formulation of nonlinear beam finite element , 1996 .

[24]  Marco Petrangeli,et al.  A FIBRE FINITE BEAM ELEMENT WITH SECTION SHEAR MODELLING FOR SEISMIC ANALYSIS OF RC STRUCTURES , 1998 .

[25]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[26]  Joel P. Conte,et al.  Finite element response sensitivity analysis using force-based frame models , 2004 .

[27]  Suchart Limkatanyu,et al.  Reinforced Concrete Frame Element with Bond Interfaces. I: Displacement-Based, Force-Based, and Mixed Formulations , 2002 .

[28]  강문설 [서평]「The Unified Modeling Language User Guide」 , 1999 .

[29]  Begnaud Francis Hildebrand,et al.  Introduction to numerical analysis: 2nd edition , 1987 .

[30]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[31]  R. M. Souza Force-based Finite Element for Large Displacement Inelastic Analysis of Frames , 2000 .

[32]  Michael H. Scott,et al.  Response sensitivity for nonlinear beam-column elements , 2004 .

[33]  T. Paulay,et al.  Seismic Design of Reinforced Concrete and Masonry Buildings , 1992 .

[34]  Filip C. Filippou,et al.  Evaluation of Nonlinear Frame Finite-Element Models , 1997 .

[35]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[36]  Suchart Limkatanyu,et al.  Reinforced Concrete Frame Element with Bond Interfaces. II: State Determinations and Numerical Validation , 2002 .

[37]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[38]  J. C. Simo,et al.  An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids , 1993 .

[39]  Robert L. Taylor,et al.  A mixed finite element method for beam and frame problems , 2003 .

[40]  W. Gautschi On the construction of Gaussian quadrature rules from modified moments. , 1970 .

[41]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[42]  Enrico Spacone,et al.  Localization Issues in Force-Based Frame Elements , 2001 .

[43]  F. Filippou,et al.  Methods of Analysisfor Earthquake- Resistant Structures , 2004 .

[44]  Keith Hjelmstad,et al.  Mixed variational methods for finite element analysis of geometrically non-linear, inelastic Bernoulli-Euler beams , 2003 .

[45]  Michael H. Scott,et al.  Plastic Hinge Integration Methods for Force-Based Beam¿Column Elements , 2006 .

[46]  M. Crisfield,et al.  Non‐Linear Finite Element Analysis of Solids and Structures, Volume 1 , 1993 .

[47]  Julio Flórez-López,et al.  Analysis of localization in frame members with plastic hinges , 2004 .

[48]  G. Powell,et al.  3D Beam‐Column Element with Generalized Plastic Hinges , 1986 .

[49]  P. Bsiant,et al.  SOFTENING IN REINFORCED CONCRETE BEAMS AND FRAMES , 2022 .

[50]  M. Menegotto Method of Analysis for Cyclically Loaded R. C. Plane Frames Including Changes in Geometry and Non-Elastic Behavior of Elements under Combined Normal Force and Bending , 1973 .

[51]  R. de Borst,et al.  Simulating the propagation of displacement discontinuities in a regularized strain‐softening medium , 2002 .

[52]  Murat Saatcioglu,et al.  Confinement of Reinforced Concrete Columns with Welded Reinforced Grids , 1999 .

[53]  D. Addessi,et al.  A regularized force‐based beam element with a damage–plastic section constitutive law , 2007 .

[54]  René de Borst,et al.  Gradient-dependent plasticity: formulation and algorithmic aspects , 1992 .