On Mesh Editing, Manifold Learning, and Diffusion Wavelets

We spell out a formal equivalence between the naive Laplacian editing and semi-supervised learning by bi-Laplacian Regularized Least Squares. This allows us to write the solution to Laplacian mesh editing in a `closed' form, based on which we introduce the Generalized Linear Editing (GLE). GLE has both naive Laplacian editing and gradient based editing as special cases. GLE allows using diffusion wavelets for mesh editing. We present preliminary experiments, and shortly discuss connections to segmentation.

[1]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[2]  Christian Rössl,et al.  Harmonic Guidance for Surface Deformation , 2005, Comput. Graph. Forum.

[3]  Marc Alexa,et al.  Differential coordinates for local mesh morphing and deformation , 2003, The Visual Computer.

[4]  Sivan Toledo,et al.  High-Pass Quantization for Mesh Encoding , 2003, Symposium on Geometry Processing.

[5]  Markus H. Gross,et al.  PriMo: coupled prisms for intuitive surface modeling , 2006, SGP '06.

[6]  Ronald R. Coifman Special issue on diffusion maps , 2006 .

[7]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[8]  Arthur D. Szlam,et al.  Diffusion wavelet packets , 2006 .

[9]  Hans-Peter Seidel,et al.  Ray Tracing Animated Scenes using Motion Decomposition , 2006, Comput. Graph. Forum.

[10]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, ACM Trans. Graph..

[11]  Daniel Cohen-Or,et al.  Linear rotation-invariant coordinates for meshes , 2005, ACM Trans. Graph..

[12]  Patrick Reuter,et al.  Point-based modelling and rendering using radial basis functions , 2003, GRAPHITE '03.

[13]  Kenji Shimada,et al.  Geometric Modeling and Processing 2006 , 2007, Comput. Aided Geom. Des..

[14]  Alla Sheffer,et al.  Pyramid coordinates for morphing and deformation , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..

[15]  Dirk Roose,et al.  Smoothing of meshes and point clouds using weighted geometry-aware bases , 2005 .

[16]  Daniel Cohen-Or,et al.  Volume and shape preservation via moving frame manipulation , 2007, TOGS.

[17]  Xiaohu Guo,et al.  Spectral mesh deformation , 2008, The Visual Computer.

[18]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[19]  Tong-Yee Lee,et al.  Mesh decomposition using motion information from animation sequences: Animating Geometrical Models , 2005 .

[20]  Mikhail Belkin,et al.  Semi-Supervised Learning on Riemannian Manifolds , 2004, Machine Learning.

[21]  Bruno Lévy,et al.  Spectral Geometry Processing with Manifold Harmonics , 2008, Comput. Graph. Forum.

[22]  James F. O'Brien,et al.  Modelling with implicit surfaces that interpolate , 2002, TOGS.

[23]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[24]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[25]  Olga Sorkine-Hornung,et al.  Differential Representations for Mesh Processing , 2006, Comput. Graph. Forum.

[26]  Tong-Yee Lee,et al.  Mesh decomposition using motion information from animation sequences , 2005, Comput. Animat. Virtual Worlds.

[27]  Sridhar Mahadevan Adaptive mesh compression in 3D computer graphics using multiscale manifold learning , 2007, ICML '07.

[28]  Ari Rappoport,et al.  Simple constrained deformations for geometric modeling and interactive design , 1994, TOGS.

[29]  Patrick Pérez,et al.  Poisson image editing , 2003, ACM Trans. Graph..

[30]  Ralf Sarlette,et al.  Simple and efficient compression of animation sequences , 2005, SCA '05.

[31]  Leif Kobbelt,et al.  Real‐Time Shape Editing using Radial Basis Functions , 2005, Comput. Graph. Forum.

[32]  R. Coifman,et al.  Diffusion Wavelets , 2004 .

[33]  Olga Sorkine-Hornung,et al.  On Linear Variational Surface Deformation Methods , 2008, IEEE Transactions on Visualization and Computer Graphics.