Elliptic Curves
暂无分享,去创建一个
[1] David Harari,et al. Cohomologie galoisienne , 2020 .
[2] G. Ballew,et al. The Arithmetic of Elliptic Curves , 2020, Elliptic Curves.
[3] Daniel Kříž. Supersingular main conjectures, Sylvester's conjecture and Goldfeld's conjecture , 2020, 2002.04767.
[4] Andrew V. Sutherland,et al. Computing classical modular forms , 2020, 2002.04717.
[5] C. Khare,et al. Jean-Pierre Wintenberger , 2020 .
[6] Jingbo Liu. Legendre's theorem, Hasse invariant and Jacobi symbol , 2019 .
[7] B. Poonen,et al. A heuristic for boundedness of ranks of elliptic curves , 2016, Journal of the European Mathematical Society.
[8] P. Roquette. The Riemann Hypothesis in Characteristic p in Historical Perspective , 2018 .
[9] David Schwein,et al. Étale Cohomology , 2018, Translations of Mathematical Monographs.
[10] A formula for the Jacobian of a genus one curve of arbitrary degree , 2015, Algebra & Number Theory.
[11] J. Kujawa,et al. Algebraic groups , 2019, Introduction to Arithmetic Groups.
[12] J. Coates. The Oldest Problem , 2017 .
[13] H. Darmon. Andrew Wiles’s Marvelous Proof , 2017 .
[14] H. Lenstra,et al. HEURISTICS FOR THE ARITHMETIC OF ELLIPTIC CURVES , 2017 .
[15] J. Coates,et al. The Conjecture of Birch and Swinnerton-Dyer , 1977, Open Problems in Mathematics.
[16] F. Oort,et al. Early history of the Riemann Hypothesis in positive characteristic , 2016 .
[17] Anja Walter,et al. Introduction To Elliptic Curves And Modular Forms , 2016 .
[18] J. Milne. The Riemann Hypothesis over Finite Fields: From Weil to the Present Day , 2015, 1509.00797.
[19] George C. Ţurcaş. The conjecture of Birch and Swinnerton-Dyer , 2015 .
[20] A majority of elliptic curves over $\mathbb Q$ satisfy the Birch and Swinnerton-Dyer conjecture , 2014, 1407.1826.
[21] J. Coates. Lectures on the Birch-Swinnerton-Dyer Conjecture , 2013 .
[22] Ezra Brown,et al. Why Ellipses Are Not Elliptic Curves , 2012 .
[23] Kristin E. Lauter,et al. Modular polynomials via isogeny volcanoes , 2010, Math. Comput..
[24] J. Milne. Motives — Grothendieck’s Dream , 2012 .
[25] Chandrashekhar Khare,et al. Serre's Modularity Conjecture , 2011 .
[26] Richard Taylor,et al. A family of Calabi-Yau varieties and potential automorphy , 2010 .
[27] J. Tate,et al. DUALITY THEOREMS IN GALOIS COHOMOLOGY OVER NUMBER FIELDS , 2010 .
[28] Chandrashekhar Khare,et al. Serre’s modularity conjecture (II) , 2009 .
[29] Fred Diamond,et al. A First Course in Modular Forms , 2008 .
[30] Jorma Jormakka,et al. On the rank of elliptic curves , 2008, 0809.4091.
[31] T. Browning,et al. Local Fields , 2008 .
[32] C. Khare. Serre's modularity conjecture: The level one case , 2006 .
[33] G. Everest,et al. Rational points on elliptic curves , 2006, math/0606003.
[34] K. Conrad,et al. Partial Euler Products on the Critical Line , 2005, Canadian Journal of Mathematics.
[35] M. Murty,et al. On a Conjecture of Birch and Swinnerton-Dyer , 2005, Canadian Journal of Mathematics.
[36] C. Wampler,et al. Basic Algebraic Geometry , 2005 .
[37] P. Sarnak. Notes on the Generalized Ramanujan Conjectures , 2005 .
[38] F. Murnaghan,et al. LINEAR ALGEBRAIC GROUPS , 2005 .
[39] B. Birch. Heegner Points: the Beginnings , 2004 .
[40] KANAYAMA Naoki,et al. Jacobian Varieties , 2003 .
[41] John M. Lee. Introduction to Smooth Manifolds , 2002 .
[42] Charles J. Mozzochi. The Fermat Diary , 2000 .
[43] Henri Cohen,et al. Advanced topics in computational number theory , 2000 .
[44] J. Milne. Descent for Shimura varieties. , 1997, alg-geom/9712031.
[45] Gary Cornell,et al. Modular Forms and Fermat's Last Theorem , 1997 .
[46] Dino J. Lorenzini. An Invitation to Arithmetic Geometry , 1996 .
[47] N. Dummigan. The Determinants of Certain Mordell-Weil Lattices , 1995 .
[48] Beppo Levi and the arithmetic of elliptic curves. , 1995 .
[49] J. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves , 1994 .
[50] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[51] J. Cremona. Algorithms for Modular Elliptic Curves , 1992 .
[52] J. Cassels. Lectures on elliptic curves , 1991 .
[53] W. Fischer,et al. Sphere Packings, Lattices and Groups , 1990 .
[54] Joseph Oesterlé. Empilements de sphères , 1990 .
[55] J. Hoffstein,et al. A nonvanishing theorem for derivatives of automorphic $L$-functions with applications to elliptic curves , 1989 .
[56] V. Kolyvagin. ON THE MORDELL-WEIL AND SHAFAREVICH-TATE GROUPS FOR WEIL ELLIPTIC CURVES , 1989 .
[57] The work of kolyvagin on the arithmetic of elliptic curves , 1989 .
[58] C. Hoffmann. Algebraic curves , 1988 .
[59] Karl Rubin,et al. Tate-Shafarevich groups andL-functions of elliptic curves with complex multiplication , 1987 .
[60] James S. Milne,et al. Arithmetic Duality Theorems , 1987 .
[61] N. Koblitz. A Course in Number Theory and Cryptography , 1987 .
[62] J. Cassels. Mordell's finite basis theorem revisited , 1986, Mathematical Proceedings of the Cambridge Philosophical Society.
[63] Don Zagier,et al. Heegner points and derivatives ofL-series , 1986 .
[64] E. Grosswald. Legendre’s Theorem , 1985 .
[65] N. Koblitz. Introduction to Elliptic Curves and Modular Forms , 1984 .
[66] G. Faltings. Endlichkeitssätze für abelsche Varietäten über Zahlkörpern , 1983 .
[67] M. Postnikov. Lectures in algebraic topology , 1983 .
[68] S. Lang. Abelian varieties , 1983 .
[69] J. Milne. Comparison of the Brauer group with the Tate-Safarevic group , 1982 .
[70] Barry Mazur,et al. Modular curves and the eisenstein ideal , 1977 .
[71] N. Koblitz. p-adic Numbers, p-adic Analysis, and Zeta-Functions , 1977 .
[72] J. Milne. On a conjecture of Artin and Tate , 1975 .
[73] N. Stephens,et al. Congruence Properties of Congruent Numbers , 1975 .
[74] H. Swinnerton-Dyer,et al. Ellitpic curves and modular functions , 1975 .
[75] J. Tate,et al. Algorithm for determining the type of a singular fiber in an elliptic pencil , 1975 .
[76] Roger North,et al. The Mathematical Career of Pierre de Fermat , 1974, The Mathematical Gazette.
[77] P. Deligne. La conjecture de Weil. I , 1974 .
[78] H. P. F. Swinnerton-Dyer,et al. The Shafarevich-Tate conjecture for pencils of elliptic curves onK3 surfaces , 1973 .
[79] T. Willmore. Algebraic Geometry , 1973, Nature.
[80] Jean-Pierre Serre. A Course in Arithmetic , 1973 .
[81] B. Mazur. Courbes Elliptiques et Symboles Modulaires , 1973 .
[82] Jean-Pierre Serre. Propriétés galoisiennes des points d'ordre fini des courbes elliptiques , 1971 .
[83] Pierre Samuel,et al. Algebraic theory of numbers , 1971 .
[84] 志村 五郎,et al. Introduction to the arithmetic theory of automorphic functions , 1971 .
[85] B. J. Birch,et al. Weber's class invariants , 1969 .
[86] J. Cassels,et al. ABELIAN l -ADIC REPRESENTATIONS AND ELLIPTIC CURVES , 1969 .
[87] W. Fulton,et al. Algebraic Curves: An Introduction to Algebraic Geometry , 1969 .
[88] James S. Milne. The Tate-Šafarevič group of a constant abelian variety , 1968 .
[89] André Weil,et al. Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen , 1967 .
[90] J. Tate. Endomorphisms of abelian varieties over finite fields , 1966 .
[91] J. Cassels,et al. Diophantine Equations with Special Reference To Elliptic Curves , 1966 .
[92] J. Tate,et al. On the conjectures of Birch and Swinnerton-Dyer and a geometric analog , 1966 .
[93] J. Cassels,et al. Arithmetic on curves of genus 1. VIII. On conjectures of Birch and Swinnerton-Dyer. , 1965 .
[94] J. Tate,et al. Algebraic cycles and poles of zeta functions , 1965 .
[95] J. Cassels. Arithmetic on curves of genus 1. VII. The dual exact sequence. , 1964 .
[96] K. Kodaira. On compact analytic surfaces II , 1963 .
[97] H. Swinnerton-Dyer,et al. Notes on elliptic curves. I. , 1963 .
[98] J. W. S. Cassels,et al. arithmetic on curves of genus 1 : iii. the tate‐Šafarevič and selmer groups , 1962 .
[99] J. Cassels,et al. Arithmetic on Curves of Genus 1. IV. Proof of the Hauptvermutung. , 1962 .
[100] S. Lang,et al. Principal Homogeneous Spaces Over Abelian Varieties , 1958 .
[101] Par Goro Shimura. Correspondances modulaires et les fonctions ζ de courbes algebriques , 1958 .
[102] J. Tate,et al. $WC$-groups over $p$-adic fields , 1958 .
[103] Ernst S. Selmer,et al. A conjecture concerning rational points on cubic curves , 1954 .
[104] M. Eichler,et al. Quaternäre quadratische Formen und die Riemannsche Vermutung fÜr die Kongruenzzetafunktion , 1954 .
[105] Kurt Heegner. Diophantische Analysis und Modulfunktionen , 1952 .
[106] H. T. H. PIAGGIO,et al. Foundations of Algebraic Geometry , 1948, Nature.
[107] M. Deuring. Die Typen der Multiplikatorenringe elliptischer Funktionenkörper , 1941 .
[108] T. Nagell. Sur les propriétés arithmétiques des cubiques planes du premier genre , 1929 .
[109] A. Weil,et al. L'arithmétique sur les courbes algébriques , 1929 .
[110] L. Dickson. History of the Theory of Numbers , 1924, Nature.
[111] G. Fischer,et al. Plane Algebraic Curves , 1921, Nature.
[112] H. Weber,et al. Theorie der algebraischen Functionen einer Veränderlichen. , 1882 .